PiCloud:
A simple approach to cloud computing

Ken Younge
Krannert School of Management

Purdue University

2013 New Directions in Text as Data Workshop
London School of Economics, September 27-29, 2013

Cloud Computing

Overview

e Amazon AVWYS + PiCloud.com

* Example projects
- Patent-to-patent similarity 7 million patents

- USPTO office actions 5 million rulings

* Example code

- 1job OneVM, 64GB RAM, a lot of storage
- 1,000 jobs A repetitive task, split up into 1,000 blocks
- 100 jobs x 7 threads ‘Queues’ to implement a pipeline

x multiple steps

Ken Younge - Purdue University 2

Cloud Computing

Amazon AWS

* Amazon sells access to virtual machines (VMs) running on the cloud
* The scale and rate of expansion of AWS drive down costs
* AWS requires considerable setup, configuration, and system admin

* AWS offers high-performance-computing (HPC) clusters, but you
need HPC-coded solutions (e.g., molecular modeling, genome analysis, ...)

* AWS doesn’t provide an easy way to parallelize the kinds of custom,
ad-hoc, cobbled-together programs we often run in text analysis

Ken Younge - Purdue University

Cloud Computing

PiCloud

* PiCloud manages AVVS for you

- they provide a unified control panel to monitor execution across multiple computers

- you can remotely monitor stdout, stderr, CPU, RAM, disk, swap, memalloc, etc...
(but if you don’t know how to do any of that - that’s OK too).

* PiCloud provides a simple API to transfer data, execute code, and
collect your results

- Your core functions can be written in Python, R, C, C++, Java, MATLAB, Fortran, etc...
- You can customize Linux environments to run anything that runs in Linux x86-64
- You can call the APl from Python or from a command line interface

- There are many types of VMs (large/small RAM, fast/slow CPU, large/small disk, ...)

Ken Younge - Purdue University 4

http://en.wikipedia.org/wiki/X86-64
http://en.wikipedia.org/wiki/X86-64

Cloud Computing

Capacity
* You can scale up to thousands of machines and unlimited storage

* You can reserve capacity when you know you need it
... but excess capacity is usually available

Cost

* AWS + PiCloud is cheaper than all of the small-, mid-, and super-
computing-sized clusters I've reviewed

* You pay for what you use

* You can enter a hard-stop dollar limit to cover your downside

Ken Younge - Purdue University 5

Cloud Computing

Example Project: Patent-to-patent vector space model

* Scrape content from the US Patent and Trademark Office
* Build a vocabulary space

* Vectorize every patent

* Save a sparse vector for each patent (small file)

* (Calculate patent-to-patent cosine similarities as needed

Ken Younge - Purdue University

Cloud Computing

Example Project: USPTO ‘office actions’

* Remotely mount 5 million ZIP archives

* OCR (tesseract) particular files from the archive
* Python-nltk the text

* |dentify events in the text that we care about

* Build a directed graph of events

Ken Younge - Purdue University

Cloud Computing

Example Code: Run one job

* Maybe you need more RAM
* Maybe you need your computer for something else

e Run it on the cloud:

import cloud
import nltk

def calculate():
insert code here that you want to run on the cloud
you can save results to cloud storage for download
or return the result(s) directly from the function

return "All Done"

job_id = cloud.call(calculate, _type="ml', _cores=8) # ml with 64 GB RAM

Ken Younge - Purdue University 8

Cloud Computing

Example Code: Run |,000 jobs

* Maybe you have a simple job but you're in a hurry

* Chop the problem into 1,000 batches and run 1,000 jobs

import cloud
import Levenshtein

def calculate(batch_no):
insert code here that you want to run on the cloud

1limit execution to the "batch" of operations represented
by the batch_no parameter passed to the funtion

you can save results to cloud storage for download
or return the result(s) directly from the function

return "Results from batch no " + str(batch_no)

batch_nos = [1 for 1 in range(1000)]
job_ids = cloud.map(calculate, batch_nos, _type="'cl', _env="younge')

Ken Younge - Purdue University 9

Cloud Computing

Example Code: Scrape website from unique IP addresses

import cloud
import urllib2
import myfuncs

def scrape(patno):

scrape

url = "http://patft.uspto.gov/netacgi/nph-Parser?&s1=" + str(patno) + ".PN."
cnn = urllib2.urlopen(Curl)

content = cnn.read()

cnn.close()

save

fname = str(patno) + ".html"
cloud.bucket.putf(content, fname)
cloud.bucket.make_public(fname)

move patno to the 'DONE' queue
return patno

def main(Q):

initialize queues

g_todo = cloud.queue.get('ToDo")
g_done = cloud.queue.get('Done")
g_err = cloud.queue.get('Error')

push 1list of patent numbers onto the starting queue
patnos = load_list("patnos.txt")
g_todo.push(patnos)

start execution

g_todo.attach(scrape, g_done,
on_error={Exception: {'queue': q_err, 'delay': 0}},
retry_on=[urllib2.HTTPError, urllib2.URLError],
retry_delay=10, max_retries=3, max_parallel_jobs=1000,
readers_per_job=7, _type="s1")

if __name__ == "__main__": exit(main())

Ken Younge - Purdue University

Cloud Computing

Example: Control Panel showing the queuing system

E>PLClou \

CLOUD COMPUTING SIMPLIFIED

' Get Started Manage Your Queues refresh

h Notebook name attachment approx. size actions

q Jobs dd_err — 0 =

. dd_firmnos main__.match 0 (]

@ Realtime Cores - - - -
dd_matched — 0 o

. Environments -
dd_processed — 0 m

» Bucket

:E Visualization Queues — Rectangles; Attachments — Circles

Crons dd_err dd_firmnos dd_matched

‘ Publish _
Exception / 0

API Keys

-

Payment
L

4%
= Support

=L .
~ Documentation

dd_processed

Ken Younge - Purdue University

Cloud Computing

|+ O®

45

=

LA

Ken Younge - Purdue University

HeYEOOme

PiCloud

CLOUD COMPUTING SIMPLIFIED

Get Started

Notebook

Realtime Cores
Environments
Bucket

Queues

Crons

Publish
Analytics

API| Keys
Payment
Support

Documentation

Displaying jobs

select: all clear actions:

kill

delete kill all

delete all | ?

view | 30

+ | with maps | collapsed

.

% page 1

lnm—m——m

184782

184781

184780

184779

184778

184777

184776

184775

184774

184773

184772

5682

5682

5682

5682

5682

5682

5682

5682

5682

5682

5682

Kens-MacBook-Pro-2.local

Kens-MacBook-Pro-2.local

Kens-MacBook-Pro-2.local

Kens-MacBook-Pro-2.local

Kens-MacBook-Pro-2.local

Kens-MacBook-Pro-2.local

Kens-MacBook-Pro-2.local

Kens-MacBook-Pro-2.local

Kens-MacBook-Pro-2.local

Kens-MacBook-Pro-2.local

Kens-MacBook-Pro-2.local

__main

__main__

__main__

__main

__main__

__main

__main__
__main__
__main__
__main__

__main__

___.match at sample.py:315
.match at sample.py:315
.match at sample.py:315
___.match at sample.py:315
.match at sample.py:315
___.match at sample.py:315
.match at sample.py:315
.match at sample.py:315
.match at sample.py:315
.match at sample.py:315

.match at sample.py:315

queue-dd_firmnos
queue-dd_firmnos
queue-dd_firmnos
queue-dd_firmnos
queue-dd_firmnos
queue-dd_firmnos
queue-dd_firmnos
queue-dd_firmnos
queue-dd_firmnos
queue-dd_firmnos

queue-dd_firmnos

2013-09-10 05:32:24

2013-09-10 05:32:24

2013-09-10 05:32:24

2013-09-10 05:32:24

2013-09-10 05:32:24

2013-09-10 01:25:04

2013-09-10 01:25:03

2013-09-10 01:25:03

2013-09-10 01:25:03

2013-09-10 01:25:03

2013-09-04 14:45:10

NS -2 -2 - 2N - 2 - 2 N N N N N

Cloud Computing

Standard Output

Standard Error

Logging ?

PiLog ?

Firm 44010 >> 9 patents
Firm 47148 >> 1 patents
Fim 47133 >> 18 patents
Firm 43976 >> 1 patents
Firm 43957 >> 1 patents
Firm 47383 >> § patents
Firm 47358 >> 11 patents
Firm 42273 >> 2 patents
Firm 46477 >> 9 patents
Firm 42386 >> 53 palents
Fim 47518 >> 1 patents
Firm 47382 >> 1 patents
Firm 42710 >> 9 patents
Firm 42711 >> 26 patenls
Firm 44675 >> 6 patents
Firm 44637 >> 3 patents
Firm 44668 >> 15 palents
Firrn 446584 >> 45 palerts
Firm 445688 >> 14 palents
Firm 42984 >> 55 palents
Firm 43013 >> § patents
Firm 43055 >> 4 patents
Firm 43012 >> 2 patents

/.

Nane

Nane

d_processecipushd with post_values ={Oelay™ 0, ‘message” {{ datatype™ “json”, “mess;

[2013-08-10 04:36:52,434]

[20%3-09-10 04:36:53,091]

[2073-09-10 04:36:53,214] -
[2073-09-10 04:36:5¢ 442] -
« [INFO) - query url queue/dd _malched/push/ with post_vai
- [DEBUG] - bucket object oby_path in clenl: dd_results/dG0€
« [INFO) - query url bucketinew/ with post_values =hex-mes
- [DEBUG] - post url htps:ipi-user-buckels s3-external-1 am
« [INFO] - query url queuel/dd _processed/push/ with post_va
[2073-09-10 04:36:5¢,890] -)
[2043-09-10 04:36:55,272] -]
[2043-09-10 04:36:55,328] -)|
« [INFO] - query url queuel/dd _processed/pushl with post_va
]
]
]

043-00-10 04:36:5¢,445]
[2013-09-10 04:36:54,541]
[2013-08-10 04:36:5¢,541]
[2013-08-10 04:36:5¢,552]
[2013-08-10 04:36:5¢,843]

[20°3-00-10 04:36:55,474]

[2013-09-10 04:36:55,734] -
[20%3-09-10 04:36:55,735] -
013-09-10 04:36:55,814] -

« [INFO] - query url queue/dd _processed/push/ with post_va
[20+3-09-10 04:36:52,528] -)|
[2073-09-10 04:36:52,579] -)
[20°53-09-10 04:36:52,661] -)|
« [INFO] - query url queuel/dd _processed/push/ with post_va
]
]

- query url queuel/dd processed/push/ with post_va
-~ query url queueidd processed/push! with post_va
- query url queue/dd_firmrosface with post_values

- query url queue/dd_firmrosface with post_vaues
- Cloud startec with adapler =<cloud transport.adap

- query url queuel/dd processed/push/ with post_va
- query url queuel/dd_firmrosface with post_values
- query url queuel/dd _processed/push/ with post_va

- query url queuel/dd processed/push/ with post_va
- query url queuel/dd firmrosipoptickets! with post
- query url queue/dd_firmrosface with post_vaues

CPU Usage

Memory Usage

Disk Usage

40,000
30,000
E
220,000
=
10,000

0
v

80.000
79.825
é
79.850
Q@
&
79775

79700

Cpu Usage

v © v © v ©) ©
v e © - - ~ & &
Runtime (s)
Maemory Usage
w © v © v © 3 ©
~ o © = = = 8 &
Runtime (s)
Disk Usage
v © v © v ©) ©
v e © - - ~ & &
Runtime (s)

W user
B system

B memory
W svep

W disk usage

Ken Younge - Purdue University

Cloud Computing

Summary

* Cloud computing can be easy and cheap

* |I'm happy to chat more down at the pub!

Thank You

Ken Younge - Purdue University

Cloud Computing

Machine Types

Core Type

c1 (default)

c2

f2

m1

si

Ken Younge - Purdue University

Compute
Units !

2.5
55w/ HT
3.25

0.5t02

Memory

300 MB

800 MB

3.7 GB

8 GB

300 MB

Disk

15 GB

30 GB

100 GB

140 GB

4 GB

:zﬁicore 2 Price/Hour
1 $0.05
8 $0.13
16 $0.22
8 $0.30
1 $0.04

