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Day 7 Outline

I classification v. clustering: kNN classifier

I k-means clustering

I hierarchical clustering

I topic models: LDA, extensions

I applications

I Next time: focus on social media and data management



k-nearest neighbour classifiers

I A non-parametric method for classifying objects based on the
training examples taht are closest in the feature space

I A type of instance-based learning, or “lazy learning” where
the function is only approximated locally and all computation
is deferred until classification

I An object is classified by a majority vote of its neighbors, with
the object being assigned to the class most common amongst
its k nearest neighbors (where k is a positive integer, usually
small)

I Extremely simple: the only parameter that adjusts is k
(number of neighbors to be used) - increasing k smooths the
decision boundary
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k-NN Example: Red or Blue?



k = 1



k = 7



k = 15



The idea of ”clusters”

I Essentially: groups of items such that inside a cluster they are
very similar to each other, but very different from those
outside the cluster

I “unsupervised classification”: cluster is not to relate features
to classes or latent traits, but rather to estimate membership
of distinct groups

I groups are given labels through post-estimation interpretation
of their elements

I typically used when we do not and never will know the “true”
class labels

I issues: how to weight distance is arbitrary
I which dimensionality? (determined by which features are

selected)
I how to weight distance is arbitrary
I different metrics for distance
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k-means clustering

I Essence: assign each item to one of k clusters, where the goal
is to minimized within-cluster difference and maximize
between-cluster differences

I Uses random starting positions and iterates until stable

I as with kNN, k-means clustering treats feature values as
coordinates in a multi-dimensional space

I Advantages
I simplicity
I highly flexible
I efficient

I Disadvantages
I no fixed rules for determining k
I uses an element of randomness for starting values
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algorithm details

1. Choose starting values
I assign random positions to k starting values that will serve as

the “cluster centres”, known as “centroids” ; or,
I assign each feature randomly to one of k classes

2. assign each item to the class of the centroid that is “closest”
I Euclidean distance is most common
I any others may also be used (Manhattan, Mikowski,

Mahalanobis, etc.)
I (assumes feature vectors have been normalized within item)

3. update: recompute the cluster centroids as the mean value of
the points assigned to that cluster

4. repeat reassignment of points and updating centroids

5. repeat 2–4 until some stopping condition is satisfied
I e.g. when no items are reclassified following update of centroids
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k-means clustering illustrated



choosing the appropriate number of clusters

I very often based on prior information about the number of
categories sought

I for example, you need to cluster people in a class into a fixed
number of (like-minded) tutorial groups

I a (rough!) guideline: set k =
√
N/2 where N is the number

of items to be classified
I usually too big: setting k to large values will improve

within-cluster similarity, but risks overfitting



choosing the appropriate number of clusters

I “elbow plots”: fit multiple clusters with different k values,
and choose k beyond which are diminishing gains

Chapter 9

[ 277 ]

Ideally, you will have some a priori knowledge (that is, a prior belief) about the true 
groupings, and you can begin applying k-means using this information. For instance, 
if you were clustering movies, you might begin by setting N equal to the number of 
genres considered for the Academy Awards. In the data science conference seating 
problem that we worked through previously, N�PLJKW�UHÁHFW�WKH�QXPEHU�RI�DFDGHPLF�
ÀHOGV�RI�VWXG\�WKDW�ZHUH�LQYLWHG�

Sometimes the number of clusters is dictated by business requirements or the 
motivation for the analysis. For example, the number of tables in the meeting hall 
could dictate how many groups of people should be created from the data science 
attendee list. Extending this idea to a business case, if the marketing department only 
has resources to create three distinct advertising campaigns, it might make sense to 
set N = 3 to assign all the potential customers to one of the three appeals.

Without any a priori knowledge at all, one rule of thumb suggests setting N equal 
to the square root of (n / 2), where n is the number of examples in the dataset. 
However, this rule of thumb is likely to result in an unwieldy number of clusters for 
ODUJH�GDWDVHWV��/XFNLO\��WKHUH�DUH�RWKHU�VWDWLVWLFDO�PHWKRGV�WKDW�FDQ�DVVLVW�LQ�ÀQGLQJ�D�
suitable k-means cluster set.

A technique known as the elbow method attempts to gauge how the homogeneity 
or heterogeneity within the clusters changes for various values of N. As illustrated 
LQ�WKH�IROORZLQJ�ÀJXUHV��WKH�KRPRJHQHLW\�ZLWKLQ�FOXVWHUV�LV�H[SHFWHG�WR�LQFUHDVH�DV�
additional clusters are added; similarly, heterogeneity will also continue to decrease 
with more clusters. Because you could continue to see improvements until each 
example is in its own cluster, the goal is not to maximize homogeneity or minimize 
KHWHURJHQHLW\��EXW�UDWKHU�WR�ÀQG�N such that there are diminishing returns beyond that 
point. This value of N is known as the elbow point, because it looks like an elbow.



choosing the appropriate number of clusters

I “fit” statistics to measure homogeneity within clusters and
heterogeneity in between

I

I numerous examples exist

I “iterative heuristic fitting”* (IHF) (trying different values and
looking at what seems most plausible)

* Warning: This is my (slightly facetious) term only!
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Other clustering methods: hierarchical clustering

I agglomerative: works from the bottom up to create clusters

I like k-means, usually involves projection: reducing the
features through either selection or projection to a
lower-dimensional representation

1. local projection: reducing features within document
2. global projection: reducting features across all documents

(Schütze and Silverstein, 1997)
3. SVD methods, such PCA on a normalized feature matrix
4. usually simple threshold-based truncation is used

(keep all but 100 highest frequency or tf-idf terms)

I frequently/always involves weighting (normalizing term
frequency, tf-idf)
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hierarchical clustering algorithm

1. start by considering each item as its own cluster, for n clusters

2. calculate the N(N − 1)/2 pairwise distances between each of
the n clusters, store in a matrix D0

3. find smallest (off-diagonal) distance in D0, and merge the
items corresponding to the i , j indexes in D0 into a new
“cluster”

4. recalculate distance matrix D1 with new cluster(s). options for
determining the location of a cluster include:

I centroids (mean)
I most dissimilar objects
I Ward’s measure(s) based on minimizing variance

5. repeat 3–4 until a stopping condition is reached
I e.g. all items have been merged into a single cluster

6. to plot the dendrograms, need decisions on ordering, since
there are 2(N−1) possible orderings
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pros and cons of hierarchical clustering

I advantages
I deterministic, unlike k-means
I no need to decide on k in advance (although can specify as a

stopping condition)
I allows hierarchical relations to be examined

(usually through dendrograms)

I disadvantages
I more complex to compute: quadratic in complexity: O(n2)

– whereas k-means has complexity that is O(n)
I the decision about where to create branches and in what order

can be somewhat arbitrary, determined by method of declaring
the “distance” to already formed clusters

I for words, tends to identify collocations as base-level clusters
(e.g. “saddam” and “hussein”)
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Topic Models

I Topic models are algorithms for discovering the main
“themes” in an unstructured corpus

I Requires no prior information, training set, or special
annotation of the texts
– only a decision on K (number of topics)

I A probabalistic, generative advance on several earlier
methods, “Latent Semantic Analysis” (LSA) and
“probabalistic latent semantic indexing” (pLSI)



differences from previous models

unigram model each word each word is assumed to be drawn from
the same term distribution

mixture of unigram models a topic is drawn for each document
and all words in a document are drawn from the term
distribution of the topic

mixed-membership models documents are not assumed to belong
to single topics, but to simultaneously belong to
several topics and the topic distributions vary over
documents



Uses and applications

I Topic models are algorithms for discovering the main themes
that pervade a large and otherwise unstructured collection of
documents

I Can be used to organize the collection according to the
discovered themes

I Topic modeling algorithms can be applied to massive
collections of documents

I Topic modeling algorithms can be adapted to many kinds of
data. among other applications, they have been used to find
patterns in genetic data, images, and social networks



Advantages over cruder methods

I parametric, so we get estimates of parameters for topic
proportions in each document, and topic weights for each word

I can incorporate additional information hierarchically (e.g.
using “structural” topic models)

I but we pay for these benefits in the form of far greater
computational complexity



Latent Dirichlet Allocation

I The LDA model is a Bayesian mixture model for discrete data
where topics are assumed to be uncorrelated (in “classic”
LDA)

I LDA provides a generative model that describes how the
documents in a dataset were created

I Each of the K topics is a distribution over a fixed vocabulary

I Each document is a collection of words, generated according
to a multinomial distribution, one for each of K topics

I Inference consists of estimating a posterior distribution from a
joint distribution based on the probability model from a
combination of what is observed (words in documents) and
what is hidden (topic and word parameters)



Latent Dirichlet Allocation

I So the process is, roughly:

1. Choose a number of topics
2. Choose a distribution of topics, and create a document from

this distribution
3. For each topic, generate words according to a distribution

specific to that topic

I The goal of inference in LDA is to discover the topics from
the collection of documents, and to estimate the relationship
of words to these



Latent Dirichlet Allocation: Details

I For each document, the LDA generative process is:

1. randomly choose a distribution over topics (a multinomial of
length K )

2. for each word in the document

2.1 Probabilistically draw one of the K topics from the
distribution over topics obtained in (a), say topic βk (each
document contains topics in different proportions)

2.2 Probabilistically draw one of the V words from βk (each
individual word in the document is drawn from one of the K
topics in proportion to the document’s distribution over topics
as determined in previous step)

I The goal of inference in LDA is to discover the topics from
the collection of documents, and to estimate the relationship
of words to these, assuming this generative process



LDA generative model

How to generate

1. Term distribution β for each topic is drawn:

β ∼ Dirichlet(δ)

β is the term distribution of topics and contains the
probability of a word occurring in a given topic

2. proportions θ of the topic distribution for the document are
drawn by

θ ∼ Dirichlet(α)

3. For each of the N words in each document
I choose a topic xi ∼ Multinomial(θ)
I choose a word wi ∼ Multinomial(p(wi |zi , β))



Graphical model for LDA using plate notation

LATENT DIRICHLET ALLOCATION

α z wθ

β

M
N

Figure 1: Graphical model representation of LDA. The boxes are “plates” representing replicates.
The outer plate represents documents, while the inner plate represents the repeated choice
of topics and words within a document.

where p(zn |θ) is simply θi for the unique i such that zin = 1. Integrating over θ and summing over
z, we obtain the marginal distribution of a document:

p(w |α,β) =
Z
p(θ |α)

 
N

∏
n=1
∑
zn
p(zn |θ)p(wn |zn,β)

!
dθ. (3)

Finally, taking the product of the marginal probabilities of single documents, we obtain the proba-
bility of a corpus:

p(D |α,β) =
M

∏
d=1

Z
p(θd |α)

 
Nd

∏
n=1
∑
zdn
p(zdn |θd)p(wdn |zdn,β)

!
dθd .

The LDA model is represented as a probabilistic graphical model in Figure 1. As the figure
makes clear, there are three levels to the LDA representation. The parameters α and β are corpus-
level parameters, assumed to be sampled once in the process of generating a corpus. The variables
θd are document-level variables, sampled once per document. Finally, the variables zdn and wdn are
word-level variables and are sampled once for each word in each document.

It is important to distinguish LDA from a simple Dirichlet-multinomial clustering model. A
classical clustering model would involve a two-level model in which a Dirichlet is sampled once
for a corpus, a multinomial clustering variable is selected once for each document in the corpus,
and a set of words are selected for the document conditional on the cluster variable. As with many
clustering models, such a model restricts a document to being associated with a single topic. LDA,
on the other hand, involves three levels, and notably the topic node is sampled repeatedly within the
document. Under this model, documents can be associated with multiple topics.

Structures similar to that shown in Figure 1 are often studied in Bayesian statistical modeling,
where they are referred to as hierarchical models (Gelman et al., 1995), or more precisely as con-
ditionally independent hierarchical models (Kass and Steffey, 1989). Such models are also often
referred to as parametric empirical Bayes models, a term that refers not only to a particular model
structure, but also to the methods used for estimating parameters in the model (Morris, 1983). In-
deed, as we discuss in Section 5, we adopt the empirical Bayes approach to estimating parameters
such as α and β in simple implementations of LDA, but we also consider fuller Bayesian approaches
as well.
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Estimation and the ”Dirichlet” part

I The Dirichlet is the conjugate prior distribution for the
multinomial, and is used in the Bayesian inference required to
estimate these parameters

I Estimation is performed using (collapsed) Gibbs sampling
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problem, computing the conditional 
distribution of the topic structure 
given the observed documents. (As we 
mentioned, this is called the posterior.) 
Using our notation, the posterior is

  (2)

The numerator is the joint distribution 
of all the random variables, which can 
be easily computed for any setting of 
the hidden variables. The denomina-
tor is the marginal probability of the 
observations, which is the probability 
of seeing the observed corpus under 
any topic model. In theory, it can be 
computed by summing the joint distri-
bution over every possible instantiation 
of the hidden topic structure.

That number of possible topic 
structures, however, is exponentially 
large; this sum is intractable to com-
pute.f As for many modern probabilis-
tic models of interest—and for much 
of modern Bayesian statistics—we 
cannot compute the posterior because 
of the denominator, which is known 
as the evidence. A central research 
goal of modern probabilistic model-
ing is to develop efficient methods 
for approximating it. Topic modeling 
algorithms—like the algorithms used 
to create Figures 1 and 3—are often 
adaptations of general-purpose meth-
ods for approximating the posterior 
distribution.

Topic modeling algorithms form 
an approximation of Equation 2 by 
adapting an alternative distribution 
over the latent topic structure to be 
close to the true posterior. Topic mod-
eling algorithms generally fall into 
two categories—sampling-based algo-
rithms and variational algorithms.

Sampling-based algorithms 
attempt to collect samples from the 
posterior to approximate it with an 
empirical distribution. The most 
commonly used sampling algorithm 
for topic modeling is Gibbs sampling, 
where we construct a Markov chain—
a sequence of random variables, each 
dependent on the  previous—whose 

f More technically, the sum is over all possible 
ways of assigning each observed word of the 
collection to one of the topics. Document col-
lections usually contain observed words at 
least on the order of millions.

limiting distribution is the posterior. 
The Markov chain is defined on the 
hidden topic variables for a particular 
corpus, and the algorithm is to run the 
chain for a long time, collect samples 

from the limiting distribution, and 
then approximate the distribution 
with the collected samples. (Often, just 
one sample is collected as an approxi-
mation of the topic structure with 

Figure 4. The graphical model for latent Dirichlet allocation. Each node is a random variable 
and is labeled according to its role in the generative process (see Figure 1). The hidden 
nodes—the topic proportions, assignments, and topics—are unshaded. The observed 
nodes—the words of the documents—are shaded. The rectangles are “plate” notation,  
which denotes replication. The N plate denotes the collection words within documents;  
the D plate denotes the collection of documents within the collection.
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Figure 5. Two topics from a dynamic topic model. This model was fit to Science from 1880  
to 2002. We have illustrated the top words at each decade.
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be easily computed for any setting of 
the hidden variables. The denomina-
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Illustration of the LDA generative process

answering two kinds of similarities: assessing the similarity between two documents, and assessing the associative 
similarity between two words. We close by considering how generative models have the potential to provide further 
insight into human cognition. 

2. Generative Models 

A generative model for documents is based on simple probabilistic sampling rules that describe how words in 
documents might be generated on the basis of latent (random) variables. When fitting a generative model, the goal is 
to find the best set of latent variables that can explain the observed data (i.e., observed words in documents), 
assuming that the model actually generated the data. Figure 2 illustrates the topic modeling approach in two distinct 
ways: as a generative model and as a problem of statistical inference.  On the left, the generative process is 
illustrated with two topics. Topics 1 and 2 are thematically related to money and rivers and are illustrated as bags 
containing different distributions over words. Different documents can be produced by picking words from a topic 
depending on the weight given to the topic. For example, documents 1 and 3 were generated by sampling only from 
topic 1 and 2 respectively while document 2 was generated by an equal mixture of the two topics. Note that the 
superscript numbers associated with the words in documents indicate which topic was used to sample the word. The 
way that the model is defined, there is no notion of mutual exclusivity that restricts words to be part of one topic 
only. This allows topic models to capture polysemy, where the same word has multiple meanings. For example, both 
the money and river topic can give high probability to the word BANK, which is sensible given the polysemous 
nature of the word. 
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Figure 2. Illustration of the generative process and the problem of statistical inference underlying topic 
models  

 

The generative process described here does not make any assumptions about the order of words as they appear in 
documents. The only information relevant to the model is the number of times words are produced. This is known as 
the bag-of-words assumption, and is common to many statistical models of language including LSA. Of course, 
word-order information might contain important cues to the content of a document and this information is not 
utilized by the model. Griffiths, Steyvers, Blei, and Tenenbaum (2005) present an extension of the topic model that 
is sensitive to word-order and automatically learns the syntactic as well as semantic factors that guide word choice 
(see also Dennis, this book for a different approach to this problem).  

The right panel of Figure 2 illustrates the problem of statistical inference. Given the  observed words in a set of 
documents, we would like to know what topic model is most likely to have generated the data. This involves 
inferring the probability distribution over words associated with each topic, the distribution over topics for each 
document, and, often, the topic responsible for generating each word. 

 3

(from Steyvers and Griffiths 2007)



Topics example

1. Introduction 

Many chapters in this book illustrate that applying a statistical method such as Latent Semantic Analysis (LSA; 
Landauer & Dumais, 1997; Landauer, Foltz, & Laham, 1998) to large databases can yield insight into human 
cognition. The LSA approach makes three claims: that semantic information can be derived from a word-document 
co-occurrence matrix; that dimensionality reduction is an essential part of this derivation; and that words and 
documents can be represented as points in Euclidean space. In this chapter, we pursue an approach that is consistent 
with the first two of these claims, but differs in the third, describing a class of statistical models in which the 
semantic properties of words and documents are expressed in terms of probabilistic topics. 

Topic models (e.g., Blei, Ng, & Jordan, 2003; Griffiths & Steyvers, 2002; 2003; 2004; Hofmann, 1999; 2001) are 
based upon the idea that documents are mixtures of topics, where a topic is a probability distribution over words. A 
topic model is a generative model for documents: it specifies a simple probabilistic procedure by which documents 
can be generated. To make a new document, one chooses a distribution over topics. Then, for each word in that 
document, one chooses a topic at random according to this distribution, and draws a word from that topic. Standard 
statistical techniques can be used to invert this process, inferring the set of topics that were responsible for 
generating a collection of documents. Figure 1 shows four example topics that were derived from the TASA corpus, 
a collection of over 37,000 text passages from educational materials (e.g., language & arts, social studies, health, 
sciences) collected by Touchstone Applied Science Associates (see Landauer, Foltz, & Laham, 1998). The figure 
shows the sixteen words that have the highest probability under each topic. The words in these topics relate to drug 
use, colors, memory and the mind, and doctor visits. Documents with different content can be generated by choosing 
different distributions over topics. For example, by giving equal probability to the first two topics, one could 
construct a document about a person that has taken too many drugs, and how that affected color perception. By 
giving equal probability to the last two topics, one could construct a document about a person who experienced a 
loss of memory, which required a visit to the doctor.       

word prob. word prob. word prob. word prob. 
DRUGS .069 RED .202 MIND .081 DOCTOR .074

DRUG .060 BLUE .099 THOUGHT .066 DR. .063
MEDICINE .027 GREEN .096 REMEMBER .064 PATIENT .061

EFFECTS .026 YELLOW .073 MEMORY .037 HOSPITAL .049
BODY .023 WHITE .048 THINKING .030 CARE .046

MEDICINES .019 COLOR .048 PROFESSOR .028 MEDICAL .042
PAIN .016 BRIGHT .030 FELT .025 NURSE .031

PERSON .016 COLORS .029 REMEMBERED .022 PATIENTS .029
MARIJUANA .014 ORANGE .027 THOUGHTS .020 DOCTORS .028

LABEL .012 BROWN .027 FORGOTTEN .020 HEALTH .025
ALCOHOL .012 PINK .017 MOMENT .020 MEDICINE .017

DANGEROUS .011 LOOK .017 THINK .019 NURSING .017
ABUSE .009 BLACK .016 THING .016 DENTAL .015

EFFECT .009 PURPLE .015 WONDER .014 NURSES .013
KNOWN .008 CROSS .011 FORGET .012 PHYSICIAN .012

PILLS .008 COLORED .009 RECALL .012 HOSPITALS .011

Topic 56Topic 247 Topic 5 Topic 43

 
Figure 1. An illustration of four (out of 300) topics extracted from the TASA corpus. 

 

Representing the content of words and documents with probabilistic topics has one distinct advantage over a purely 
spatial representation. Each topic is individually interpretable, providing a probability distribution over words that 
picks out a coherent cluster of correlated terms. While Figure 1 shows only four out of 300 topics that were derived, 
the topics are typically as interpretable as the ones shown here. This contrasts with the arbitrary axes of a spatial 
representation, and can be extremely useful in many applications (e.g., Griffiths & Steyvers, 2004; Rosen-Zvi, 
Griffiths, Steyvers, & Smyth, 2004; Steyvers, Smyth, Rosen-Zvi,  & Griffiths, 2004).  

The plan of this chapter is as follows. First, we describe the key ideas behind topic models in more detail, and 
outline how it is possible to identify the topics that appear in a set of documents. We then discuss methods for 
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(b) Document Assignments to Topics

Figure 1: The latent space of a topic model consists of topics, which are distributions over words, and a
distribution over these topics for each document. On the left are three topics from a fifty topic LDA model
trained on articles from the New York Times. On the right is a simplex depicting the distribution over topics
associated with seven documents. The line from each document’s title shows the document’s position in the
topic space.

In this paper, we present a method for measuring the interpretatability of a topic model. We devise
two human evaluation tasks to explicitly evaluate both the quality of the topics inferred by the
model and how well the model assigns topics to documents. The first, word intrusion, measures
how semantically “cohesive” the topics inferred by a model are and tests whether topics correspond
to natural groupings for humans. The second, topic intrusion, measures how well a topic model’s
decomposition of a document as a mixture of topics agrees with human associations of topics with a
document. We report the results of a large-scale human study of these tasks, varying both modeling
assumptions and number of topics. We show that these tasks capture aspects of topic models not
measured by existing metrics and–surprisingly–models which achieve better predictive perplexity
often have less interpretable latent spaces.

2 Topic models and their evaluations

Topic models posit that each document is expressed as a mixture of topics. These topic proportions
are drawn once per document, and the topics are shared across the corpus. In this paper we will
consider topic models that make different assumptions about the topic proportions. Probabilistic
Latent Semantic Indexing (pLSI) [3] makes no assumptions about the document topic distribution,
treating it as a distinct parameter for each document. Latent Dirichlet allocation (LDA) [4] and the
correlated topic model (CTM) [5] treat each document’s topic assignment as a multinomial random
variable drawn from a symmetric Dirichlet and logistic normal prior, respectively.

While the models make different assumptions, inference algorithms for all of these topic models
build the same type of latent space: a collection of topics for the corpus and a collection of topic
proportions for each of its documents. While this common latent space has explored for over two
decades, its interpretability remains unmeasured.

Pay no attention to the latent space behind the model

Although we focus on probabilistic topic models, the field began in earnest with latent semantic
analysis (LSA) [6]. LSA, the basis of pLSI’s probabilistic formulation, uses linear algebra to decom-
pose a corpus into its constituent themes. Because LSA originated in the psychology community,
early evaluations focused on replicating human performance or judgments using LSA: matching
performance on standardized tests, comparing sense distinctions, and matching intuitions about
synonymy (these results are reviewed in [7]). In information retrieval, where LSA is known as latent
semantic indexing (LSI) [8], it is able to match queries to documents, match experts to areas of
expertise, and even generalize across languages given a parallel corpus [9].
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Model evaluation (K )

I can compute a likelihood for “held-out” data

I perplexity: can be computed as (using VEM):

perplexity(w) = exp

{
−
∑M

d=1 logp(wd)
∑M

d=1 Nd

}

I lower perplexity score indicates better performance



Evaluating model performance: human judgment

(Chang, Jonathan et al. 2009. “Reading Tea Leaves: How Humans Interpret

Topic Models.” Advances in neural information processing systems.)

Uses human evaluation of:

I whether a topic has (human-identifiable) semantic coherence:
word intrusion, asking subjects to identify a spurious word
inserted into a topic

I whether the association between a document and a topic
makes sense: topic intrusion, asking subjects to identify a
topic that was not associated with the document by the model



Example

Word Intrusion Topic Intrusion

Figure 2: Screenshots of our two human tasks. In the word intrusion task (left), subjects are presented with a set
of words and asked to select the word which does not belong with the others. In the topic intrusion task (right),
users are given a document’s title and the first few sentences of the document. The users must select which of
the four groups of words does not belong.

word is selected at random from a pool of words with low probability in the current topic (to reduce
the possibility that the intruder comes from the same semantic group) but high probability in some
other topic (to ensure that the intruder is not rejected outright due solely to rarity). All six words are
then shuffled and presented to the subject.

3.2 Topic intrusion

The topic intrusion task tests whether a topic model’s decomposition of documents into a mixture of
topics agrees with human judgments of the document’s content. This allows for evaluation of the
latent space depicted by Figure 1(b). In this task, subjects are shown the title and a snippet from a
document. Along with the document they are presented with four topics (each topic is represented by
the eight highest-probability words within that topic). Three of those topics are the highest probability
topics assigned to that document. The remaining intruder topic is chosen randomly from the other
low-probability topics in the model.

The subject is instructed to choose the topic which does not belong with the document. As before, if
the topic assignment to documents were relevant and intuitive, we would expect that subjects would
select the topic we randomly added as the topic that did not belong. The formulation of this task
provides a natural way to analyze the quality of document-topic assignments found by the topic
models. Each of the three models we fit explicitly assigns topic weights to each document; this task
determines whether humans make the same association.

Due to time constraints, subjects do not see the entire document; they only see the title and first
few sentences. While this is less information than is available to the algorithm, humans are good
at extrapolating from limited data, and our corpora (encyclopedia and newspaper) are structured to
provide an overview of the article in the first few sentences. The setup of this task is also meaningful
in situations where one might be tempted to use topics for corpus exploration. If topics are used
to find relevant documents, for example, users will likely be provided with similar views of the
documents (e.g. title and abstract, as in Rexa).

For both the word intrusion and topic intrusion tasks, subjects were instructed to focus on the
meanings of words, not their syntactic usage or orthography. We also presented subjects with the
option of viewing the “correct” answer after they submitted their own response, to make the tasks
more engaging. Here the “correct” answer was determined by the model which generated the data,
presented as if it were the response of another user. At the same time, subjects were encouraged to
base their responses on their own opinions, not to try to match other subjects’ (the models’) selections.
In small experiments, we have found that this extra information did not bias subjects’ responses.

4 Experimental results

To prepare data for human subjects to review, we fit three different topic models on two corpora.
In this section, we describe how we prepared the corpora, fit the models, and created the tasks
described in Section 3. We then present the results of these human trials and compare them to metrics
traditionally used to evaluate topic models.
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I conclusions: the quality measures from human benchmarking
were negatively correlated with traditional quantitiative
diagnostic measures!
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In this section, we describe how we prepared the corpora, fit the models, and created the tasks
described in Section 3. We then present the results of these human trials and compare them to metrics
traditionally used to evaluate topic models.
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I conclusions: the quality measures from human benchmarking
were negatively correlated with traditional quantitiative
diagnostic measures!



Drawbacks of LDA

I discards word order

I assumes documents are exchangeable

I the setting of the hyperparameters has led to a great deal of
confusion, even as we note above, leading to a misconception
about the effective- ness of different forms of posterior
inference

I unclear how to choose the number of topics K



Extensions to LDA

I relax independence of topics
I Correlated Topic Model (Blei and Lafferty 2007): Dirichlet

prior is replaced with a logistic Normal distribution
I Dynamic Topic Model (Blei and Lafferty 2006): parameters

change using an evolution model
I Add additional information

I Expressed Agenda Model (Grimmer 2010): allows for
differences in topic probabilities across authors

I Add additional information
I Dirichlet-Multinomial Topic Model (Mimno and McCallum

(2008): parameterized the Dirichlet parameter using covariates
I Structural Topic Model: Airoldi, Roberts, and Stewart (2011)



Which implementation in R?

I lda

I topicmodels

I mallet

I stm

I quanteda: textmodel lda()


