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Generalized linear model specification

As in models for continuous responses, we are interested in the expectation (mean) of
the response as a function of the covariate. The expectation of a binary (0 or 1) response
is just the probability that the response is 1:

Elyilzs) = Pr{y: = ay)

In linear regression, the conditional expectation of the response is modeled as a linear
function E{y;|e;) = By + faz; of the covariate (see sec. 1.5). For dichotomous responses,
this approach may be problematic because the probability must le between 0 and 1,
whereas regression lines increase (or decrease) indefinitely as the covariate increases (or
decreases). Instead, a nonlinear function is specified in one of two ways:

Pri{y; = lai} = h(B: + fams)
or
g{Pr{ys = Uz)} = B1 -+ fowi = 1y
where v; is referred to as the linear predictor. These two formulations are equivalent

if the function A(-} is the inverse of the function g(-). Here g(-) is known as the link
function and h(-) as the inverse link function, sometimes written as g~ '(-).



Link function for binary response

exp(fy + fozi)

Pr(y, = ljz;) = logit™ (61 + fos) = 1+ exp(01 + oy}

or .
Priy; = tz;)

i Pr(yi = 1E"L‘g)
Odds(y=1w)

logis (Pr(ys = 1Jz)} = n b= o+




Logit models as latent response models

The logistic regression model and other models for dichotomous responses can also
be viewed as latent-response models. Underlying the observed dichotomous response y;
{whether the woman works or not), there is an unobserved or latent continuous response
y¥, representing the propensity to work or the excess utility of working as compared
with not working. If this latent response is greater than 0, the observed response is 1:

Y Hyr >0
Y%= 0 otherwise

For simplicity, we will assume that there is one covariate ;. A linear regression model
is then specified for the latent response y;

yy = By -+ fazy g

where ¢; is a residual error term with Fle;|z;) = 0 and the error terms of different
women ¢ are independent.



“logit” regression v. " progit” regression

» Logit regression:

In logistic regression, ¢; is assumed to have a logistic cumulative density function given
Ti,
exp(r)

Pr{e; < 7leg) = T+ exp(r)

which has mean zero and variance n2/3 = 3.28 (note that = here represents the famous
mathernatical constant ‘pi’).

» Probit regression:

When a latent-response formulation is used, it seems natural to assume that ¢; has a
normal distribution given z;, as is usually done in linear regression. If a standard (mean
0 and variance 1) normal distribution is assumed, the model becomes a probit model

Pr(y; =1}z;) Pr(y; > O0lz;) = Pr(fy + fori + € > 0)
Prie; > —(61 + fa))} = Pr{—e < B + Bozs)
= Prle; € B+ Bozs) = (01 + Pottu) (6.4)

Here ('} is the standard normal cumulative distribution function, the probability that
a standard normally distributed random. variable (here ¢;) is less than the argument.
®(-) is the inverse link function A{-), whereas the link function g(-) is ®7'(-), the inverse
standard normal cumulative distribution function, called the probit link function. The
penultimate equality in (6.4) exploits the symmetry of the normal distribution.
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lllustration of logit GLM and latent response formulations




Random-intercept logistic regression

» To relax the assumption of conditional independence we
add a group-specific random intercept ; to the linear predictor:

logitdPr{y;; = Lixi;, ()} = B+ Bea; + BaTaig + Baa;as + G

> We assume that y;j|m; ~ binomial(1, ), given that
mij = Pr(yglxi,; ¢)
» We can estimate this model using xtlogit

» Alternatively we can use the xtmelogit command, but we
must specify the number of integration points



Poisson models

» This is also a GLM, but with different link and error functions
» Focus here is on a constant incidence rate A defined as the
instantaneous probability of a new event per time interval

» The number of events y that occur in time t has a Poisson

distribution:
exp(—p)1”

Pr(y|u) = )

where E(y) = u and is given by

W= At



Specification for single-level Poisson regression

The expected number of visits p;; at occasion 7 for subject j is specific
linear model
In(psg) = vig = P+ Pazai + -+ Pror

or equivalently as an exponential model for the expected number of visits:

pij = explvi)



Random intercept model for multilevel Poisson regression

One way to address the dependence within persons is to include a person-spec
intercept (1, in the Poisson regression model

pig = Elyisixig, Q) = exp(fy + Bazoi + -+ + Grzgsy + (1g)

expl{(Bi+Cuy) + Boto; + -+ Priyiz}
exp((1;) exp(B1 + Batas + -+ + Briryj)

I}

where {14]%;; ~ N(0,111) and the 15 are independent across persons j. The
of the random intercept, exp((1;), is sometimes called a frailty. The number

» Commands are xtpoisson and xtmepoisson

» It is also possible to run random coefficients models for
Poisson



