Day 4: Random-coefficient models

Introduction to Multilevel Models EUI Short Course 22–27 May, 2011 Prof. Kenneth Benoit

May 26, 2011

Measures of fit for random intercept models

- Consider a null model without covariates, compared to a model with covariates
- ► The *R*² with OLS is the *proportional reduction in variance* from using the covariates model versus the null model:

$$R^2 = \frac{\hat{\sigma}_0^2 - \hat{\sigma}_1^2}{\hat{\sigma}_0^2}$$

Snijders and Bosker (1999) propose a similar measures for the linear random-intercept model:

$$R^{2} = \frac{\hat{\psi}_{0} + \hat{\theta}_{0} - (\hat{\psi}_{1} + \hat{\theta}_{1})}{\hat{\psi}_{0} + \hat{\theta}_{0}}$$

From the smoking and birthweight example (see earlier table):

$$\hat{\psi}_1 + \hat{\theta}_1 = 338.7686^2 + 370.6648^2 = 252156.56$$

It follows that

$$R^2 = \frac{278260.43 - 252156.56}{278260.43} = 0.09$$

Separate measures of proportional reduction of variance

Raudenbush and Bryk (2002) suggest considering the proportional reduction in each of the variance components separately. In our example, the proportion of level-2 variance explained by the covariates is

$$R_2^2 = \frac{\hat{\psi}_0 - \hat{\psi}_1}{\hat{\psi}_0} = \frac{368.2866^2 - 338.7686^2}{368.2866^2} = 0.15$$

and the proportion of level-1 variance explained is

$$R_1^2 = \frac{\hat{\theta}_0 - \hat{\theta}_1}{\hat{\theta}_0} = \frac{377.6578^2 - 370.6648^2}{377.6578^2} = 0.04$$

Between-group effects

If we wanted to obtain purely between-mother effects of the covariates, we could average the response and explanatory variables for each mother j over children i and perform the regression on the resulting means:

$$\frac{1}{n_j} \sum_{i=1}^{n_j} y_{ij} = \frac{1}{n_j} \sum_{i=1}^{n_j} (\beta_1 + \beta_2 x_{2ij} + \dots + \beta_p x_{pij} + \zeta_j + \epsilon_{ij})$$

or

$$\overline{y}_{.j} = \beta_1 + \beta_2 \overline{x}_{2.j} + \dots + \beta_p \overline{x}_{p.j} + \zeta_j + \overline{\epsilon}_{.j}$$
(3.8)

where:

- $\bar{y}_{.j}$ is the mean response for group j
- $\bar{x}_{2,j}$ is the mean of the first independent variable for group j
- $\bar{\epsilon}_{.i}$ is the mean of level-1 residuals

Between-group effects

. xtreg birwt smoke male mage hsgrad somecoll collgrad married black kessner2 > kessner3 novisit pretri2 pretri3, i(momid) be Between regression (regression on group means) Number of obs 8604 <u>----</u> 3978 Group variable: momid Number of groups -----R-sq: within = 0.0299Obs per group: min = 2 between = 0.1168avg = 2.2 overal1 = 0.0949max = 3 F(13,3964) 40.31 22 sd(u_i + avg(e_i.))= 424.7306 Prob > F0.0000 ==

*****			*****	·····		
birwt	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
smoke	-286.1476	23.22554	-12.32	0.000	-331.6828	-240.6125
male	104.9432	19.49531	5.38	0.000	66.72141	143.165
mage	4.398704	1.505448	2.92	0.003	1.447179	7.35023
hsgrad	58.80977	25.51424	2.30	0.021	8.787497	108.832
somecoll	85.07129	28.1348	3.02	0.003	29,91126	140.2313
collgrad	99.87509	29.35324	3.40	0.001	42.32622	157.424
married	41.91268	26.10719	1.61	0.108	-9.272101	93.09745
black	-218.4045	28.57844	-7.64	0.000	~274.4344	-162.3747
kessner2	-101.4931	37.65605	-2.70	0.007	-175.3202	-27.66607
kessner3	-201.9599	79.28821	-2.55	0.011	-357.4094	-46.51042
novisit	-51.02733	124.2073	-0.41	0.681	~294.5435	192.4889
pretri2	125.4776	44.72006	2.81	0.005	37.80114	213.1541
pretri3	241.1201	100.6567	2.40	0.017	43.77638	438.4637
_cons	3241.45	46.15955	70.22	0.000	3150.951	3331.948

Within-group effects

If we wanted to obtain purely within-mother effects, we could subtract the betweenmother regression (3.8) from the original model (3.2) to obtain the within model

$$y_{ij} - \overline{y}_{.j} = \beta_2(x_{2ij} - \overline{x}_{2\cdot j}) + \dots + \beta_p(x_{pij} - \overline{x}_{p\cdot j}) + \epsilon_{ij} - \overline{\epsilon}_{.j}$$
(3.9)

- where all variables have been centered around their respective cluster means
- covariates that do no vary within clusters drop out of the equation because the mean-centered covariate is zero

Within-group effects

. xtreg birwt smoke male mage hsgrad somecoll collgrad married black kessner2 > kessner3 novisit pretri2 pretri3, i(momid) fe

Fixed-effects (within) regression	Number of obs		8604
Group variable: momid	Number of groups	, .	3978
R-sq: within = 0.0465	Obs per group: m	nin =	2
between = 0.0557	a	vg =	2.2
overall = 0.0546	n	nax =	3
	F(8,4618)	*	28.12
corr(u_i, Xb) = -0.0733	Prob > F		0.0000

birwt	Coef.	Std. Err.	t	P> t	[95% Conf	. Interval]
smoke	-104.5494	29.10075	-3.59	0.000	-161.6007	-47.49798
male	125.6355	10.92272	11.50	0.000	104.2217	147.0492
mage	23.15832	3.006667	7.70	0.000	17.26382	29.05282
hsgrad	(dropped)					
somecoll	(dropped)					
collgrad	(dropped)					
married	(dropped)					
black	(dropped)					
kessner2	-91.49483	23.48914	-3.90	0.000	-137.5448	-45.4449
kessner3	-128.091	47.79636	-2.68	0.007	-221.7947	~34.38731
novisit	-4.805898	77.7721	-0.06	0.951	-157.2764	147.6646
pretri2	81.29039	27.04974	3.01	0.003	28.25998	134,3208
pretri3	153.059	60.08453	2.55	0.011	35.26462	270,8534
_cons	2767.504	86.23602	32.09	0.000	2598.44	2936.567
sigma u	440,05052					
sigma e	368,91787					
rho	.58725545	(fraction	of varia	nce due t	o u_i)	
F test that a	ll u i=0:	F(3977, 461	8) =	2.83	Prob >	F = 0.0000

Comparisons

	MLE random effects $\widehat{\boldsymbol{eta}}^R$		Between $\widehat{\boldsymbol{\beta}}^B$		$\frac{1}{\widehat{\boldsymbol{\beta}}^{W}}$	
	Est	(SE)	Est	(SE)	Est	(SE)
Fixed part						
$\beta_1 [_cons]$	3,117	(41)	3,241	(46)	2,768	(86)
β_2 [smoke]	-218	(18)	-286	(23)	-105	(29)
β_3 [male]	121	(10)	105	(19)	126	(11)
β_4 [mage]	8	(1)	- 4	(2)	23	(3)
β_5 [hsgrad]	57	(25)	59	(26)		
β_6 [somecoll]	81	(27)	85	(28)		
β_7 [collgrad]	91	(28)	100	(29)		
β_8 [married]	50	(26)	42	(26)		
β_9 [black]	-211	(28)	-218	(29)		
β_{10} [kessner2]	-93	(20)	-101	(38)	91	(23)
β_{11} [kessner3]	-151	(41)	-202	(79)	-128	(48)
β_{12} [novisit]	-30	(66)	-51	(124)	-5	(78)
β_{13} [pretri2]	93	(23)	125	(45)	81	(27)
β_{14} [pretri3]	179	(52)	241	(101)	153	(60)
Random part						
$\sqrt{\psi}$	339				440 ^a	
$\sqrt{\theta}$	371				369 ^a	

Table 3.2: Random-, between-, and within-effects estimates for smoking data (in grams)

^aNot parameter estimates, but standard deviations of estimates $\hat{\epsilon}_{ij}$ and $\hat{\zeta}_{j}$.

Within versus between-group effects

 x_{ij}

Cluster-level confounding and related problems

- As in the previous illustration, it may happen that the between-cluster effect and the within-cluster effects are opposite in nature (causing the ecological fallacy, for instance)
- This is caused when the x_{ij} variable is correlated with the random effect ζ_j, which may also be thought of as a residual that represents the effects of omitted cluster-level covariates
- ► This is sometimes referred to as endogeneity because the x_{ij} variable is determined (as a response variable) by something else
- This problem can be addressed using the same methods for addressing endogenity in non-multilevel models, e.g. instrumental variables
- There is also a Hausman test for the presense of this sort of endogeneity

Type I and Type II errors

- Whenever we decide to reject H₀ at a given α, we risk wrongly rejecting null hypothesis H₀ that is actually *true*
- ► Type I error: rejecting H₀ when we should have retained it
- The counterpart is the risk of retaining H₀ when in fact it is false – this is known as Type II error and is denoted by β
- Type I and Type II errors are inversely related

Type I and Type II errors

Power computation for group-level covariates

Sample size to achieve a given power γ at significance level α for two-sided test of H₀ : β₂ = 0:

$$\frac{\beta_2}{\mathsf{SE}(\hat{\beta}_2) = z_{1-\alpha/2} + z_{\gamma}}$$

For a random-intercept model with a between-cluster covariate, the SE of the coefficient estimate (maxlik) is:

$$\mathsf{SE}(\hat{eta}_2) = \sqrt{rac{n\psi+ heta}{J \ n \ s_{xO}^2}}$$

For a random-intercept model with a within-cluster covariate, the SE of the coefficient estimate (maxlik) is:

$$\mathsf{SE}(\hat{eta}_2) = \sqrt{rac{ heta}{J \ n \ s_{xO}^2}}$$

Day 4 focus: random coefficient models

- In linear random-intercept models, the overall level of the reponse, conditional on X, could vary across clusters
- In random coefficients models, we also allow the marginal effect of the covariates to vary across clusters
- This is exactly analogous to the different slopes for the dichotomous sector variable we say on Day 3 (except that we do not model it using dummy variables)
- Why we do not use dummy variables instead of MLM:
 - inefficient: we would have to estimate two additional parameters for every cluster
 - this is not a random coefficient model (but rather is fixed to the sample)
 - slight difference in error variance assumptions

Example using the inner-London school dataset (Rasbash et. al. 2005)

This dataset is called gsce.dta and contains:

school school ID

student student ID

- gsce Graduate Certificate of Secondary Education score (standardized and multiplied by 10)
 - Irt London Reading Test score (standardized and multiplied by 10)

girl dummy variable for child being a girl (1 or 0 for boy) schgen type of school (1: mixed, 2: boys only, 3: girls only) [Switch to Stata here and show output]

Specification of random-coefficient model

$$y_{ij} = \beta_1 + \beta_2 x_{ij} + \zeta_{1j} + \zeta_{2j} x_{ij} + \epsilon_{ij}$$

= $(\beta_1 + \zeta_{1j}) + (\beta_2 + \zeta_{2j}) x_{ij} + \epsilon_{ij}$

- ζ_{1j} represents the deviation of school j's intercept from the mean intercept β₁
- The intercepts ζ_{1j} and the slopes ζ_{2j} are independent across clusters
- ► The level-1 residuals e_{ij} are independent across schools and students
- The interpretation of the variance-covariance matrix (the Ψ) is no longer straightforward, since depend on covariates, and also since the residual variance will (consequently) not be constant
- This means that interpreting the total and partial R² statistics is not straightforward (as with RI models)

Comparison with random-intercept model

Estimation of the random coefficients model

The random coefficients model can be considered a special case of the random-intercept model

$$y_{ij} = (\beta_1 + \zeta_{1j}) + \beta_2 x_{ij} + \epsilon_{ij}$$

where the $\zeta_{2j}=0$ (from the RC model), or equivalently, $\psi_{22}=\psi_{21}=0$

Comparisons

	Model 1: Random intercept	Model 2: Random coefficient	Model 3: Rand. coefficient & level-2 covariates		
Parameter	Est (SE)	Est (SE)	Est (SE) γ_{xx}		
Fixed part β_1 [_cons] β_2 [lrt] β_3 [boys] β_4 [girls] β_5 [boys_lrt] β_6 [girls_lrt]	$\begin{array}{c} 0.02 & (0.40) \\ 0.56 & (0.01) \end{array}$	$ \begin{array}{c} -0.12 & (0.40) \\ 0.56 & (0.02) \end{array} $	$\begin{array}{cccc} -1.00 & (0.51) & \gamma_{11} \\ 0.57 & (0.03) & \gamma_{21} \\ 0.85 & (1.09) & \gamma_{12} \\ 2.43 & (0.84) & \gamma_{13} \\ -0.02 & (0.06) & \gamma_{22} \\ -0.03 & (0.04) & \gamma_{23} \end{array}$		
Random part xtmixed $\sqrt{\psi_{11}}$ $\sqrt{\psi_{22}}$ ρ_{21} $\sqrt{\theta}$	3.04 7.52	3.01 0.12 0.50 7.44	2.80 0.12 0.60 7.44		
$\begin{array}{c} \texttt{gllamm} \\ \psi_{11} \\ \psi_{22} \\ \psi_{21} \\ \theta \end{array}$	9.21 56.57	9.04 0.01 0.18 55.37			
Log likelihood	-14,024.80	-14,004.61	-13,998.83		

Table 4.1: Maximum likelihood estimates for inner-London school data

Show Stata for Table 4.1

Some warnings concerning random coefficients models

- Just as with interactive dummy variables, we should always include the fixed slope along with the random slope (otherwise, we constrain its mean to be zero)
- ► We should choose carefully which variables we wish to allow to have random slopes, since k random slopes (plus 1 random intercept) means there are (k + 2)(k + 1)/2 + 1 parameters to estimate
- Identification and estimation issues can become real problems in some random coefficients models, and may require simplication before estimates can be practically obtained (using MLE)