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Measures of fit for random intercept models

I Consider a null model without covariates, compared to a model with
covariates

I The R2 with OLS is the proportional reduction in variance from
using the covariates model versus the null model:

R2 =
σ̂2

0 − σ̂2
1

σ̂2
0

I Snijders and Bosker (1999) propose a similar measures for the linear
random-intercept model:

R2 =
ψ̂0 + θ̂0 − (ψ̂1 + θ̂1)

ψ̂0 + θ̂0

I From the smoking and birthweight example (see earlier table):



Separate measures of proportional reduction of variance



Between-group effects

I where:
I ȳ·j is the mean response for group j
I x̄2·j is the mean of the first independent variable for group j
I ε̄·j is the mean of level-1 residuals



Between-group effects



Within-group effects

I where all variables have been centered around their respective
cluster means

I covariates that do no vary within clusters drop out of the
equation because the mean-centered covariate is zero



Within-group effects



Comparisons



Within versus between-group effects



Cluster-level confounding and related problems

I As in the previous illustration, it may happen that the
between-cluster effect and the within-cluster effects are
opposite in nature (causing the ecological fallacy, for instance)

I This is caused when the xij variable is correlated with the
random effect ζj , which may also be thought of as a residual
that represents the effects of omitted cluster-level covariates

I This is sometimes referred to as endogeneity because the xij

variable is determined (as a response variable) by something
else

I This problem can be addressed using the same methods for
addressing endogenity in non-multilevel models, e.g.
instrumental variables

I There is also a Hausman test for the presense of this sort of
endogeneity



Type I and Type II errors

I Whenever we decide to reject H0 at a given α, we risk
wrongly rejecting null hypothesis H0 that is actually true

I Type I error: rejecting H0 when we should have retained it

I The counterpart is the risk of retaining H0 when in fact it is
false – this is known as Type II error and is denoted by β

I Type I and Type II errors are inversely related



Type I and Type II errors



Power computation for group-level covariates

I Sample size to achieve a given power γ at significance level α
fora two-sided test of H0 : β2 = 0:

β2

SE(β̂2) = z1−α/2 + zγ

I For a random-intercept model with a between-cluster
covariate, the SE of the coefficient estimate (maxlik) is:

SE(β̂2) =

√
nψ + θ

J n s2
xO

I For a random-intercept model with a within-cluster covariate,
the SE of the coefficient estimate (maxlik) is:

SE(β̂2) =

√
θ

J n s2
xO



Day 4 focus: random coefficient models

I In linear random-intercept models, the overall level of the
reponse, conditional on X , could vary across clusters

I In random coefficients models, we also allow the marginal
effect of the covariates to vary across clusters

I This is exactly analogous to the different slopes for the
dichotomous sector variable we say on Day 3 (except that
we do not model it using dummy variables)

I Why we do not use dummy variables instead of MLM:
I inefficient: we would have to estimate two additional

parameters for every cluster
I this is not a random coefficient model (but rather is fixed to

the sample)
I slight difference in error variance assumptions



Example using the inner-London school dataset (Rasbash
et. al. 2005)

This dataset is called gsce.dta and contains:

school school ID

student student ID

gsce Graduate Certificate of Secondary Education score
(standardized and multiplied by 10)

lrt London Reading Test score (standardized and multiplied by
10)

girl dummy variable for child being a girl (1 or 0 for boy)

schgen type of school (1: mixed, 2: boys only, 3: girls only)

[Switch to Stata here and show output]



Specification of random-coefficient model

I ζ1j represents the deviation of school j ’s intercept from the
mean intercept β1

I ζ2j represents the deviation of school j ’s slope from the mean
slope β2

I The intercepts ζ1j and the slopes ζ2j are independent across
clusters

I The level-1 residuals εij are independent across schools and
students

I The interpretation of the variance-covariance matrix (the Ψ) is
no longer straightforward, since depend on covariates, and also
since the residual variance will (consequently) not be constant

I This means that interpreting the total and partial R2 statistics
is not straightforward (as with RI models)



Comparison with random-intercept model



Estimation of the random coefficients model

I The random coefficients model can be considered a special
case of the random-intercept model

yij = (β1 + ζ1j) + β2xij + εij

where the ζ2j = 0 (from the RC model), or equivalently,
ψ22 = ψ21 = 0



Comparisons



Show Stata for Table 4.1



Some warnings concerning random coefficients models

I Just as with interactive dummy variables, we should always
include the fixed slope along with the random slope
(otherwise, we constrain its mean to be zero)

I We should choose carefully which variables we wish to allow
to have random slopes, since k random slopes (plus 1 random
intercept) means there are (k + 2)(k + 1)/2 + 1 parameters to
estimate

I Identification and estimation issues can become real problems
in some random coefficients models, and may require
simplication before estimates can be practically obtained
(using MLE)


