
Quantitative Text Analysis
Exercise 3: Descriptive Statistics for Textual Data

23rd July 2014, Essex Summer School

Kenneth Benoit and Paul Nulty

In today’s lab we will explore various descriptive statistics of text with R and quanteda.

Instructions

1. Keywords-in-context

(a) We’ve already seen a basic way of searching text in R and on the terminal using
grep. quanteda provides a keyword-in-context function that is easily usable and
configurable to explore texts in a descriptive way. Type ?kwic to view the documen-
tation.

(b) For speed, we will work with a subset of the corpus. The subset command will extract
a sub-corpus that matches an expression. Use the command below to extract the
2010 speeches:

data(iebudgets)

iebudgets2010 <- subset(iebudgets, year==2010)

(c) Load the Irish budget debate speeches and experiment with the kwic function, fol-
lowing the syntax specified on the help page for kwic. kwic can be used either on a
character vector or a corpus object. Note that the kwic function returns a dataframe
containing the document name and pre-keyword and post-keyword text for each re-
sult, so that you could assign this return value to a new object if you wished to save
it. Try assigning the return value from kwic to a new object and then examine the
dataframe you have assigned by clicking on it in the environment pane in RStudio.

(d) Use the kwic function to discover the context of the word ‘toxic’. Is this associated
with environmental pollution?

(e) Examine the context of words related to “disaster”. Hint: you can use the stem of
the word along with setting the regex argument to TRUE.

2. Descriptive statistics
(Hint: for this section, note the following standard R functions: colSums, rowSums, sort,
and length.)

(a) We can extract basic descriptive statistics from a corpus from its document feature
matrix. Make a dfm from the 2010 subset of the Irish budget speeches corpus.

(b) Use standard R commands to calculate the total number of word types per document
and, the total number of word tokens per document. Hint: Total word types can be
obtained by coercing the Boolean TRUE value from the condition that a (word type
> 0) to the integer 1 and summing these values across rows using rowSums.

(c) What is the most frequent word in the corpus? (You can calculate this either (i)
by sorting the sums of the columns in the dfm using standard R functions, or (ii)
sorting the dfm with the quanteda function dfmSort.

1

(d) The summary function returns a dataframe containing a column indicating the num-
ber of sentences in each document. How many sentences occur in the corpus in
total?

(e) summary quanteda provides a function to count syllables in a word — countSyllables.
Try the function at the prompt. The code below will apply this function to all the
words in the corpus, to give you a count of the total syllables in the corpus.

count syllables from texts in the 2010 speech corpus

textSyls <- countSyllables(getTexts(iebudgets2010))

sum the syllable counts

totalSyls <- sum(textSyls)

(f) One of the best known readability measures is the Flesch-Kincaid index. The formula
is:

206.835 − 1.015

(
totaltokens

totalsentences

)
− 84.6

(
totalsyllables

totaltokens

)
You should now have the values for these variables — calculate the Flesch-Kincaid
index of the Irish budget speeches.

3. Lexical Diversity over Time

(a) We can plot the type-token ratio of the Irish budget speeches over time. To do this,
begin by extracting a subset of iebudgets that contains only the first speaker from
each year:

data(iebudgets)

finMins <- subset(iebudgets, no=="01")

(b) Get the type-token ratio for each text from this subset, and plot the resulting vector
of ttrs.

4. Zipf’s Law

(a) Zipf’s Law states that the log of the rank of a words in a word frequency list has a
linear relationship with the log of the frequency. Run the R code below to generate
a plot demonstrating this for the Irish budget speeches (where the variable total

contains the sorted total document frequencies).

demonstrate Zipf’s law - plot log frequency by log rank

plot(log10(1:100), log10(total[1:100]),

xlab="log(rank)", ylab="log(frequency)", main="Top 100 Words")

(b) Zipf’s law also suggests that the regression slope will be approximately -1.0. Check
this using lm for linear regression.

regression to check if slope is approx -1.0

regression <- lm(log10(total[1:100]) ~ log10(1:100))

summary(regression)

confint(regression)

2

