
Day 5: Unsupervised Learning

Kenneth Benoit

Data Mining and Statistical Learning

March 16, 2015



Unsupervised ”learning”: scaling distance

I Features are treated as a quantitative matrix of features
I (standardized) variables
I (normalized) word feature counts, in text

I Different possible definitions of distance
I see for instance summary(pr DB) from proxy library

I Works on any quantitative matrix of features



Distance measures

library(proxy, warn.conflicts = FALSE, quietly = TRUE)

summary(pr_DB)

## * Similarity measures:

## Braun-Blanquet, Chi-squared, correlation, cosine, Cramer, Dice,

## eJaccard, Fager, Faith, Gower, Hamman, Jaccard, Kulczynski1,

## Kulczynski2, Michael, Mountford, Mozley, Ochiai, Pearson, Phi,

## Phi-squared, Russel, simple matching, Simpson, Stiles, Tanimoto,

## Tschuprow, Yule, Yule2

##

## * Distance measures:

## Bhjattacharyya, Bray, Canberra, Chord, divergence, Euclidean,

## fJaccard, Geodesic, Hellinger, Kullback, Levenshtein, Mahalanobis,

## Manhattan, Minkowski, Podani, Soergel, supremum, Wave, Whittaker



Parametric v. non-parametric methods

I Parametric methods model feature occurrence according to
some stochastic distribution, typically in the form of a
measurement model

I for instance, model words as a multi-level Bernoulli
distribution, or a Poisson distribution

I feature effects and “positional” effects are unobserved
parameters to be estimated

I Non-parametric methods typically based on the Singular Value
Decomposition of a matrix

I principal components analysis
I correspondence analysis
I other (multi)dimensional scaling methods



Example: text, representing documents as vectors

I The idea is that (weighted) features form a vector for each
document, and that these vectors can be judged using metrics
of similarity

I A document’s vector for us is simply (for us) the row of the
document-feature matrix



Characteristics of similarity measures

Let A and B be any two documents in a set and d(A,B) be the
distance between A and B.

1. d(x , y) ≥ 0 (the distance between any two points must be
non-negative)

2. d(A,B) = 0 iff A = B (the distance between two documents
must be zero if and only if the two objects are identical)

3. d(A,B) = d(B,A) (distance must be symmetric: A to B is
the same distance as from B to A)

4. d(A,C ) ≤ d(A,B) + d(B,C ) (the measure must satisfy the
triangle inequality)



Euclidean distance

Between document A and B where j indexes their features, where
yij is the value for feature j of document i

I Euclidean distance is based on the Pythagorean theorem

I Formula √√√√
j∑

j=1

(yAj − yBj)2 (1)

I In vector notation:
‖yA − yB‖ (2)

I Can be performed for any number of features J (or V as the
vocabulary size is sometimes called – the number of columns
in of the dfm, same as the number of feature types in the
corpus)



A geometric interpretation of “distance”

In a right angled triangle, the cosine of an angle θ or cos(θ) is the
length of the adjacent side divided by the length of the hypotenuse

We can use the vectors to represent the text location in a
V -dimensional vector space and compute the angles between them



Cosine similarity

I Cosine distance is based on the size of the angle between the
vectors

I Formula
yA · yB
‖yA‖‖yB‖

(3)

I The · operator is the dot product, or
∑

j yAjyBj
I The ‖yA‖ is the vector norm of the (vector of) features vector

y for document A, such that ‖yA‖ =
√∑

j y
2
Aj

I Nice propertyfor text: cosine measure is independent of
document length, because it deals only with the angle of the
vectors

I Ranges from -1.0 to 1.0 for term frequencies, or 0 to 1.0 for
normalized term frequencies (or tf-idf)



Cosine similarity illustrated



Example text

12 

Document similarity 
Hurricane Gilbert swept toward the Dominican 

Republic Sunday , and the Civil  Defense  
alerted its heavily  populated south coast to 
prepare for high winds, heavy rains and high 
seas.  

The storm was approaching from the southeast 
with sustained  winds of 75 mph gusting to 92 
mph .  

�There is no need for alarm," Civil Defense 
Director Eugenio Cabral said in  a television  
alert shortly before  midnight Saturday .  

Cabral said residents of the province of Barahona 
should closely  follow Gilbert 's movement .  

An estimated 100,000 people live in the province, 
including 70,000 in the city of Barahona , about 
125 miles  west of Santo Domingo .  

Tropical Storm Gilbert formed in the eastern 
Caribbean and strengthened into a hurricane 
Saturday night  

The National Hurricane Center in Miami 
reported its position at 2a.m. Sunday at 
latitude 16.1  north ,  longitude 67.5 west, 
about 140 miles south of Ponce, Puerto 
Rico, and 200 miles southeast of Santo 
Domingo.  

The National Weather Service in San Juan , 
Puerto Rico , said Gilbert was  moving 
westward at 15 mph with  a "broad area of 
cloudiness and heavy  weather" rotating 
around the center of the storm.  

The weather service issued a flash flood watch 
for Puerto Rico and the Virgin Islands until 
at least 6p.m. Sunday.  

Strong winds associated with the Gilbert 
brought coastal flooding , strong southeast 
winds and up  to 12 feet  to Puerto Rico 's 
south coast.  



Example text: selected terms

I Document 1
Gilbert: 3, hurricane: 2, rains: 1, storm: 2, winds: 2

I Document 2
Gilbert: 2, hurricane: 1, rains: 0, storm: 1, winds: 2



Example text: cosine similarity in R

require(quanteda)

## Loading required package: quanteda

toyDfm <- matrix(c(3,2,1,2,2, 2,1,0,1,2), nrow=2, byrow=TRUE)

colnames(toyDfm) <- c("Gilbert", "hurricane", "rain", "storm", "winds")

rownames(toyDfm) <- c("doc1", "doc2")

toyDfm

## Gilbert hurricane rain storm winds

## doc1 3 2 1 2 2

## doc2 2 1 0 1 2

simil(toyDfm, "cosine")

## doc1

## doc2 0.9438798



Relationship to Euclidean distance

I Cosine similarity measures the similarity of vectors with
respect to the origin

I Euclidean distance measures the distance between particular
points of interest along the vector



Jacquard coefficient

I Similar to the Cosine similarity

I Formula
yA · yB

‖yA‖+ ‖yB‖ − yA · yyB
(4)

I Ranges from 0 to 1.0



Example: Inaugural speeches, cosine distance to Obama
2014

presDfm <- dfm(subset(inaugCorpus, Year>1980),

ignoredFeatures=stopwords("english", verbose=FALSE),

stem=TRUE, verbose=FALSE)

obamaDistance <- as.matrix(dist(as.matrix(presDfm), "Cosine"))

dotchart(obamaDistance[1:8,9], xlab="Cosine distance")



Example: Jaccard distance to Obama

obamaDistance <- as.matrix(dist(presDfm, "eJaccard"))

## Error in as.matrix(dist(presDfm, "eJaccard")): error in evaluating

the argument ’x’ in selecting a method for function ’as.matrix’: Error

in dist(presDfm, "eJaccard") :

## Can only handle data frames, vectors, matrices, and lists!

dotchart(obamaDistance[1:8,9], xlab="Jaccard distance")



Common uses

I Clustering (we will see this shortly)

I Used extensively in information retrieval

I Summmary measures of how far apart two texts are – but be
careful exactly how you define “features”

I Some but not many applications in social sciences to measure
substantive similarity — scaling models are generally preferred

I Can be used to generalize or represent features in machine
learning, by combining features using kernel methods to
compute similarities between textual (sub)sequences without
extracting the features explicitly (as we have done here)



The idea of ”clusters”

I Essentially: groups of items such that inside a cluster they are
very similar to each other, but very different from those
outside the cluster

I “unsupervised classification”: cluster is not to relate features
to classes or latent traits, but rather to estimate membership
of distinct groups

I groups are given labels through post-estimation interpretation
of their elements

I typically used when we do not and never will know the “true”
class labels

I issues: how to weight distance is arbitrary
I which dimensionality? (determined by which features are

selected)
I how to weight distance is arbitrary
I different metrics for distance



k-means clustering

I Essence: assign each item to one of k clusters, where the goal
is to minimized within-cluster difference and maximize
between-cluster differences

I Uses random starting positions and iterates until stable

I as with kNN, k-means clustering treats feature values as
coordinates in a multi-dimensional space

I Advantages
I simplicity
I highly flexible
I efficient

I Disadvantages
I no fixed rules for determining k
I uses an element of randomness for starting values



Algorithm details

1. Choose starting values
I assign random positions to k starting values that will serve as

the “cluster centres”, known as “centroids” ; or,
I assign each feature randomly to one of k classes

2. assign each item to the class of the centroid that is “closest”
I Euclidean distance is most common
I any others may also be used (Manhattan, Mikowski,

Mahalanobis, etc.)
I (assumes feature vectors have been normalized within item)

3. update: recompute the cluster centroids as the mean value of
the points assigned to that cluster

4. repeat reassignment of points and updating centroids

5. repeat 2–4 until some stopping condition is satisfied
I e.g. when no items are reclassified following update of centroids



k-means clustering illustrated



Choosing the appropriate number of clusters

I very often based on prior information about the number of
categories sought

I for example, you need to cluster people in a class into a fixed
number of (like-minded) tutorial groups

I a (rough!) guideline: set k =
√
N/2 where N is the number

of items to be classified
I usually too big: setting k to large values will improve

within-cluster similarity, but risks overfitting



Choosing the appropriate number of clusters

I “elbow plots”: fit multiple clusters with different k values,
and choose k beyond which are diminishing gains

Chapter 9

[ 277 ]

Ideally, you will have some a priori knowledge (that is, a prior belief) about the true 
groupings, and you can begin applying k-means using this information. For instance, 
if you were clustering movies, you might begin by setting N equal to the number of 
genres considered for the Academy Awards. In the data science conference seating 
problem that we worked through previously, N�PLJKW�UHÁHFW�WKH�QXPEHU�RI�DFDGHPLF�
ÀHOGV�RI�VWXG\�WKDW�ZHUH�LQYLWHG�

Sometimes the number of clusters is dictated by business requirements or the 
motivation for the analysis. For example, the number of tables in the meeting hall 
could dictate how many groups of people should be created from the data science 
attendee list. Extending this idea to a business case, if the marketing department only 
has resources to create three distinct advertising campaigns, it might make sense to 
set N = 3 to assign all the potential customers to one of the three appeals.

Without any a priori knowledge at all, one rule of thumb suggests setting N equal 
to the square root of (n / 2), where n is the number of examples in the dataset. 
However, this rule of thumb is likely to result in an unwieldy number of clusters for 
ODUJH�GDWDVHWV��/XFNLO\��WKHUH�DUH�RWKHU�VWDWLVWLFDO�PHWKRGV�WKDW�FDQ�DVVLVW�LQ�ÀQGLQJ�D�
suitable k-means cluster set.

A technique known as the elbow method attempts to gauge how the homogeneity 
or heterogeneity within the clusters changes for various values of N. As illustrated 
LQ�WKH�IROORZLQJ�ÀJXUHV��WKH�KRPRJHQHLW\�ZLWKLQ�FOXVWHUV�LV�H[SHFWHG�WR�LQFUHDVH�DV�
additional clusters are added; similarly, heterogeneity will also continue to decrease 
with more clusters. Because you could continue to see improvements until each 
example is in its own cluster, the goal is not to maximize homogeneity or minimize 
KHWHURJHQHLW\��EXW�UDWKHU�WR�ÀQG�N such that there are diminishing returns beyond that 
point. This value of N is known as the elbow point, because it looks like an elbow.



Choosing the appropriate number of clusters

I “fit” statistics to measure homogeneity within clusters and
heterogeneity in between

I numerous examples exist

I “iterative heuristic fitting”* (IHF) (trying different values and
looking at what seems most plausible)

* Warning: This is my (slightly facetious) term only!



Other clustering methods: hierarchical clustering

I agglomerative: works from the bottom up to create clusters
I like k-means, usually involves projection: reducing the

features through either selection or projection to a
lower-dimensional representation

1. local projection: reducing features within document
2. global projection: reducting features across all documents

(Schütze and Silverstein, 1997)
3. SVD methods, such PCA on a normalized feature matrix
4. usually simple threshold-based truncation is used

(keep all but 100 highest frequency or tf-idf terms)

I frequently/always involves weighting (normalizing term
frequency, tf-idf)



hierarchical clustering algorithm

1. start by considering each item as its own cluster, for n clusters

2. calculate the N(N − 1)/2 pairwise distances between each of
the n clusters, store in a matrix D0

3. find smallest (off-diagonal) distance in D0, and merge the
items corresponding to the i , j indexes in D0 into a new
“cluster”

4. recalculate distance matrix D1 with new cluster(s). options for
determining the location of a cluster include:

I centroids (mean)
I most dissimilar objects
I Ward’s measure(s) based on minimizing variance

5. repeat 3–4 until a stopping condition is reached
I e.g. all items have been merged into a single cluster

6. to plot the dendrograms, need decisions on ordering, since
there are 2(N−1) possible orderings



Dendrogram: Presidential State of the Union addresses

data(SOTUCorpus, package="quantedaData")

presDfm <- dfm(subset(SOTUCorpus, year>1960), verbose=FALSE, stem=TRUE,

ignoredFeatures=stopwords("english", verbose=FALSE))

presDfm <- trim(presDfm, minCount=5, minDoc=3)

## Features occurring less than 5 times: 4049

## Features occurring in fewer than 3 documents: 3511

# hierarchical clustering - get distances on normalized dfm

presDistMat <- dist(as.matrix(weight(presDfm, "relFreq")))

# hiarchical clustering the distance object

presCluster <- hclust(presDistMat)

# label with document names

presCluster$labels <- docnames(presDfm)

# plot as a dendrogram

plot(presCluster)



Dendrogram: Presidential State of the Union addresses



Dendrogram: Presidential State of the Union addresses

# word dendrogram with tf-idf weighting

wordDfm <- sort(tfidf(presDfm)) # sort in decreasing order of total word freq

wordDfm <- t(wordDfm)[1:100,] # because transposed

wordDistMat <- dist(wordDfm)

wordCluster <- hclust(wordDistMat)

plot(wordCluster, xlab="", main="tf-idf Frequency weighting")



Dendrogram: Presidential State of the Union addresses



pros and cons of hierarchical clustering

I advantages
I deterministic, unlike k-means
I no need to decide on k in advance (although can specify as a

stopping condition)
I allows hierarchical relations to be examined

(usually through dendrograms)

I disadvantages
I more complex to compute: quadratic in complexity: O(n2)

– whereas k-means has complexity that is O(n)
I the decision about where to create branches and in what order

can be somewhat arbitrary, determined by method of declaring
the “distance” to already formed clusters

I for words, tends to identify collocations as base-level clusters
(e.g. “saddam” and “hussein”)



Dendrogram: Presidential State of the Union addresses



Non-parametric dimensional reduction methods

I Non-parametric methods are algorithmic, involving no
“parameters” in the procedure that are estimated

I Hence there is no uncertainty accounting given distributional
theory

I Advantage: don’t have to make assumptions
I Disadvantages:

I cannot leverage probability conclusions given distribtional
assumptions and statistical theory

I results highly fit to the data
I not really assumption-free (if we are honest)



Principal Components Analysis

I For a set of features X1,X2, . . . ,Xp, typically centred (to have
mean 0)

I the first principal component is the normalized linear
combination of the features

Z1 = φ11X1 + φ21X2 + . . .+ φp1Xp

that has the largest variance

I normalized means that
∑p

j=1 φ
2
j1 = 1

I the elements φ11, . . . , φp1 are the loadings of the first
principal component

I the second principal component is the linear combination Z2

of X1,X2, . . . ,Xp that has maximal variance out of all linear
combinations that are uncorrelated with Z1



PCA factor loadings example

10.2 Principal Components Analysis 377

PC1 PC2

Murder 0.5358995 −0.4181809
Assault 0.5831836 −0.1879856
UrbanPop 0.2781909 0.8728062
Rape 0.5434321 0.1673186

TABLE 10.1. The principal component loading vectors, φ1 and φ2, for the
USArrests data. These are also displayed in Figure 10.1.

where φ2 is the second principal component loading vector, with elements
φ12, φ22, . . . , φp2. It turns out that constraining Z2 to be uncorrelated with
Z1 is equivalent to constraining the direction φ2 to be orthogonal (perpen-
dicular) to the direction φ1. In the example in Figure 6.14, the observations
lie in two-dimensional space (since p = 2), and so once we have found φ1,
there is only one possibility for φ2, which is shown as a blue dashed line.
(From Section 6.3.1, we know that φ12 = 0.544 and φ22 = −0.839.) But in
a larger data set with p > 2 variables, there are multiple distinct principal
components, and they are defined in a similar manner. To find φ2, we solve
a problem similar to (10.3) with φ2 replacing φ1, and with the additional
constraint that φ2 is orthogonal to φ1.

1

Once we have computed the principal components, we can plot them
against each other in order to produce low-dimensional views of the data.
For instance, we can plot the score vector Z1 against Z2, Z1 against Z3,
Z2 against Z3, and so forth. Geometrically, this amounts to projecting
the original data down onto the subspace spanned by φ1, φ2, and φ3, and
plotting the projected points.

We illustrate the use of PCA on the USArrests data set. For each of the
50 states in the United States, the data set contains the number of arrests
per 100, 000 residents for each of three crimes: Assault, Murder, and Rape.
We also record UrbanPop (the percent of the population in each state living
in urban areas). The principal component score vectors have length n = 50,
and the principal component loading vectors have length p = 4. PCA was
performed after standardizing each variable to have mean zero and standard
deviation one. Figure 10.1 plots the first two principal components of these
data. The figure represents both the principal component scores and the
loading vectors in a single biplot display. The loadings are also given in

biplot
Table 10.1.

In Figure 10.1, we see that the first loading vector places approximately
equal weight on Assault, Murder, and Rape, with much less weight on

1On a technical note, the principal component directions φ1, φ2, φ3, . . . are the
ordered sequence of eigenvectors of the matrix XT X, and the variances of the compo-
nents are the eigenvalues. There are at most min(n − 1, p) principal components.



PCA factor loadings biplot
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FIGURE 10.1. The first two principal components for the USArrests data. The
blue state names represent the scores for the first two principal components. The
orange arrows indicate the first two principal component loading vectors (with
axes on the top and right). For example, the loading for Rape on the first com-
ponent is 0.54, and its loading on the second principal component 0.17 (the word
Rape is centered at the point (0.54, 0.17)). This figure is known as a biplot, be-
cause it displays both the principal component scores and the principal component
loadings.

UrbanPop. Hence this component roughly corresponds to a measure of overall
rates of serious crimes. The second loading vector places most of its weight
on UrbanPop and much less weight on the other three features. Hence, this
component roughly corresponds to the level of urbanization of the state.
Overall, we see that the crime-related variables (Murder, Assault, and Rape)
are located close to each other, and that the UrbanPop variable is far from
the other three. This indicates that the crime-related variables are corre-
lated with each other—states with high murder rates tend to have high
assault and rape rates—and that the UrbanPop variable is less correlated
with the other three.



PCA projection illustrated
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FIGURE 10.2. Ninety observations simulated in three dimensions. Left: the
first two principal component directions span the plane that best fits the data. It
minimizes the sum of squared distances from each point to the plane. Right: the
first two principal component score vectors give the coordinates of the projection
of the 90 observations onto the plane. The variance in the plane is maximized.

xij ≈
M∑

m=1

zimφjm (10.5)

(assuming the original data matrix X is column-centered). In other words,
together the M principal component score vectors and M principal com-
ponent loading vectors can give a good approximation to the data when
M is sufficiently large. When M = min(n − 1, p), then the representation

is exact: xij =
∑M

m=1 zimφjm.

10.2.3 More on PCA

Scaling the Variables

We have already mentioned that before PCA is performed, the variables
should be centered to have mean zero. Furthermore, the results obtained
when we perform PCA will also depend on whether the variables have been
individually scaled (each multiplied by a different constant). This is in
contrast to some other supervised and unsupervised learning techniques,
such as linear regression, in which scaling the variables has no effect. (In
linear regression, multiplying a variable by a factor of c will simply lead to
multiplication of the corresponding coefficient estimate by a factor of 1/c,
and thus will have no substantive effect on the model obtained.)

For instance, Figure 10.1 was obtained after scaling each of the variables
to have standard deviation one. This is reproduced in the left-hand plot in
Figure 10.3. Why does it matter that we scaled the variables? In these data,



Correspondence Analysis

I CA is like factor analysis for categorical data

I Following normalization of the marginals, it uses Singular
Value Decomposition to reduce the dimensionality of the
word-by-text matrix

I This allows projection of the positioning of the words as well
as the texts into multi-dimensional space

I The number of dimensions – as in factor analysis – can be
decided based on the eigenvalues from the SVD



Singular Value Decomposition

I A matrix X
i×j

can be represented in a dimensionality equal to

its rank k as:

X
i×j

= U
i×k

d
k×k

V′
j×k

(5)

I The U, d, and V matrixes “relocate” the elements of X onto
new coordinate vectors in n-dimensional Euclidean space

I Row variables of X become points on the U column
coordinates, and the column variables of X become points on
the V column coordinates

I The coordinate vectors are perpendicular (orthogonal) to each
other and are normalized to unit length



Correspondence Analysis and SVD

I Divide each value of X by the geometric mean of the
corresponding marginal totals (square root of the product of
row and column totals for each cell)

I Conceptually similar to subtracting out the χ2 expected cell
values from the observed cell values

I Perform an SVD on this transformed matrix
I This yields singular values d (with first always 1.0)

I Rescale the row (U) and column (V) vectors to obtain
canonical scores (rescaled as Ui

√
f··/fi · and Vj

√
f··/fj ·)



Example: Schonhardt-Bailey (2008) - speakers

402 S C H O N H A R D T-B A I L E Y

appears to be unique to that bill – i.e., the specific procedural measures, the constitutionality
of the absent health exception, and the gruesome medical details of the procedure are all
unique to the PBA ban as defined in the 2003 bill. Hence, to ignore the content of the
debates by focusing solely on the final roll-call vote is to miss much of what concerned
senators about this particular bill. To see this more clearly, we turn to Figure 3, in which
the results from ALCESTE’s classification are represented in correspondence space.

Fig. 3. Correspondence analysis of classes and tags from Senate debates on Partial-Birth Abortion Ban Act



Example: Schonhardt-Bailey (2008) - words
410 S C H O N H A R D T-B A I L E Y

Fig. 4. Senate debates on Partial-Birth Abortion Ban Act – word distribution in correspondence space



How to get confidence intervals for CA

I There are problems with bootstrapping: (Milan and Whittaker
2004)

I rotation of the principal components
I inversion of singular values
I reflection in an axis



How to account for uncertainty

I Ignore the problem and hope it will go away
I SVD-based methods (e.g. correspondence analysis) typically

do not present errors
I and traditionally, point estimates based on other methods have

not either



How to account for uncertainty

I Analytical derivatives

I Using the multinomial formulation of the Poisson model, we
can compute a Hessian for the log-likelihood function

I The standard errors on the θi parameters can be computed
from the covariance matrix from the log-likelihood estimation
(square roots of the diagonal)

I The covariance matrix is (asymptotically) the inverse of the
negative of the Hessian
(where the negative Hessian is the observed Fisher information
matrix, a.ka. the second derivative of the log-likelihood
evaluated at the maximum likelihood estimates)

I Problem: These are too small



How to account for uncertainty

I Parametric bootstrapping (Slapin and Proksch, Lewis and
Poole)
Assume the distribution of the parameters, and generate data
after drawing new parameters from these distributions.
Issues:

I slow
I relies heavily (twice now) on parametric assumptions
I requires some choices to be made with respect to data

generation in simulations

I Non-parametric bootstrapping

I

I (and yes of course) Posterior sampling from MCMC



How to account for uncertainty

I Non-parametric bootstrapping
I draw new versions of the texts, refit the model, save the

parameters, average over the parameters
I slow
I not clear how the texts should be resampled



How to account for uncertainty

I For MCMC: from the distribution of posterior samples



Dimensions

How infer more than one dimension?
This is two questions:

I How to get two dimensions (for all policy areas) at the same
time?

I How to get one dimension for each policy area?



The hazards of ex-post interpretation illustrated

Monroe and Maeda 13
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Figure 4: Rhetorical Ideal Points with Partisan Means and Cutline



Interpreting scaled dimensions

I In practice can be very subjective, involves interpretation

I Another (better) option: compare them other known
descriptive variables

I Hopefully also validate the scale results with some human
judgments

I This is necessary even for single-dimensional scaling

I And just as applicable for non-parametric methods (e.g.
correspondence analysis) as for the Poisson scaling model


