Day 4: Shrinkage Estimators

Kenneth Benoit

Data Mining and Statistical Learning

March 9, 2015

n versus p (aka k)

- Classical regression framework: n > p. Without this inequality, the OLS coefficients have no unique solution
- The variance of the estimates increases as $p \rightarrow n$
- To predict problems where n < p, we need new strategies -OLS and versions of OLS will not work
- Note: These are predictive methods, not methods for explanation!

Strategies for coping with n < p

- Subset selection. Identifying a relevant subset of the p < n predictors, and fitting an OLS model on the reduced set of variables
- Shrinkage. Fitting a model involving all p predictors, but penalizing (regularizing) the coefficients in such as way that they are shrunken towards zero relative to the least squares estimates
 - has the effect of reducing variance
 - may also perform variable selection (with the lasso)
- Dimension Reduction. Replacing the p predictors with projections (linear combinations) of the predictors onto *M*-dimensional subspace, where *M* < p, and then fitting an OLS model on the reduced set of (combination) variables

Subset selection through sequential testing

Such a model can be found using a series of significance tests

- ► Usual t or F tests of the coefficients, all using the same significance level (e.g. 5%)
- Two basic versions are:
 - Forward selection: start with a model with no explanatory variables, and add new ones one at a time, until none of the omitted ones are significant
 - Backward selection: start with a model with all the variables included, and remove nonsignificant ones, one at a time, until the remaining ones are significant
- In practice, the most careful (and safest) procedure is a combination of these two: stepwise selection

Stepwise model selection

- Pick a significance level, say $\alpha = 0.05$
- Start forwards (from a model with nothing in it) or backwards (from a model with everything in it)
- Then, repeat the following:
 - \blacktriangleright Add to the current model the omitted variable for which the P-value would be smallest, if this is smaller than α
 - \blacktriangleright Remove the variable with the largest P-value, if this is bigger than α
 - Continue until all the variables in the current model have $P < \alpha$, and all the ones out of it would have $P \ge \alpha$
- This process can even be done "automatically" in one go, but usually shouldn't — needs more care than that

Example from HIE data

- ▶ Response variable: General Health Index at entry, n = 1113
- Potential explanatory variables: sex (dummy for men), age, log of family income, weight, blood pressure and smoking (as two dummy variables, for current and ex smokers)
 - A haphazard collection of variables with no theoretical motivation, purely for illustration of the stepwise procedure
 - For simplicity, no interactions or nonlinear effects considered
- *F*-tests are used for the smoking variable (with two dummies), *t*-tests for the rest
- Start backwards, i.e. from a full model with all candidate variables included

Example: Health Index Experiment

	Response variable: General Health Index				
	Model				
Variable	(1)	(2)	(4)	(5)	(6)
Age	-0.138	-0.089	-0.128	-0.142	_
	(< 0.001)	(0.004)	(< 0.001)	(< 0.001)	
Education	_	1.157	0.990	0.981	1.117
		(< 0.001)	(< 0.001)	(< 0.001)	(< 0.001)
Income	_		0.275	0.277	0.219
			(< 0.001)	(< 0.001)	(< 0.001)
Work	_	_	_	0.002	-0.007
experience				(0.563)	(0.045)
(Constant)	74.777	58.801	59.417	59.723	54.666
R^2	0.012	0.051	0.061	0.061	0.054
(P-values in parentheses)					

Example from HIE data

- 1. In the full model, Blood pressure (P = 0.71), Smoking (P = 0.30) and Sex (P = 0.19) are not significant at the 5% level
 - Remove Blood pressure
- 2. Now Smoking (P = 0.30) and Sex (P = 0.19) are not significant
 - Remove Smoking
- 3. If added to this model, Blood pressure is not be significant (P = 0.71), so it can stay out
- 4. In this model, Sex (P = 0.21) is the only nonsignificant variable, so remove it
- 5. Added (one at a time) to this model, neither Blood pressure (P = 0.77) nor Smoking (P = 0.31) is significant, so they can stay out

Example from HIE data

- So the final model includes Age, Log-income and Weight, all of which are significant at the 5% level
- Here the nonsignificant variables were clear and unchanging throughout, but this is definitely not always the case

Comments and caveats on stepwise model selection

- Often some variables are central to the research hypothesis, and treated differently from other control variables
 - e.g. in the Health Insurance Experiment, the insurance plan was the variable of main interest
 - Such variables are not dropped during a stepwise search, but tested separately at the end

 Variables are added or removed one at a time, not several at once

- For categorical variables with more than two categories, this means adding or dropping all the corresponding dummy variables at once
- Individual dummy variables (i.e. differences between particular categories) may be tested separately (e.g. at the end)

Comments and caveats on stepwise model selection

- The models should always be hierarchical:
 - ▶ if an interaction (e.g. coefficient of X₁X₂) is significant, main effects (X₁ and X₂) may not be dropped
 - if coefficient of X^2 is significant, X may not be dropped
- In practice, the possible interactions and nonlinear terms are often not all considered in model selection
 - Only those with some a priori plausibility
- Because it involves a sequence of multiple tests, the overall stepwise procedure is not a significance test with significance level α
- Not guaranteed to find a single "best" model, because it may not exist: there may be several models satisfying the conditions stated earlier

Changes of scale

- In short: Linear rescaling of variables will not change the essential key statistics for inference, just their scale
- Suppose we reexpress x_i as $(x_i + a)/b$. Then:
 - $t, F, \hat{\sigma}^2, R^2$ unchanged
 - $\hat{\beta}_i \to b\hat{\beta}_i$
- Suppose we rescale y_i as $(y_i + a)/b$. Then:
 - t, F, R^2 unchanged
 - $\hat{\sigma}^2$ and $\hat{\beta}_i$ will be rescaled by b
- Standardized variables and standardized coefficients: where we replace the variables (all x and y) by their standardized values (x_i − X̄)/SD_x (e.g. for x). Standardized coefficients are sometimes called "betas".

More on standardized coefficients

Consider a standardized coefficient b^* on a single variable x.

Formula:
$$b^* = b \frac{SD_x}{SD_y}$$

- Intrepretation: the increase in standard deviations of y associated with a one standard deviation increase in x
- Motivation: "standardizes" units so we can compare the magnitude of different variables' effects
- In practice: serious people never use these and you should not either
 - too tricky to interpret
 - misleading since suggests we can compare apples and oranges
 - too dependent on sample variation (just another version of R^2)
- ► We can illustrate this in R, if we use the scale() [,1] command to standardize the variables, which transforms them into z_i = (x_i X̄)/SD_x

Standardized coefficients illustrated

Collinearity

- \blacktriangleright When some variables are exact linear combinations of others then we have exact collinearity, and there is no unque least squares estimate of β
- When X variables are correlated, then we have (multi)collinearity
- Detecting (multi)collinearity:
 - look at correlation matrix of predictors for pairwise correlations
 - regress x_k on all other predictors to produce R²_k, and look for high values (close to 1.0)
 - Examine eigenvalues of X'X

Collinearity continued

Define:

$$S_{x_jx_j} = \sum_i (x_{ij} - \bar{x}_j)^2$$

then

$$\mathsf{Var}(\hat{eta}_j) = \sigma^2 \left(rac{1}{1-R_j^2}
ight) rac{1}{\mathcal{S}_{\mathsf{x}_j\mathsf{x}_j}}$$

- So collinearity's main consequence is to reduce the efficiency of our estimates of β
- So if x_j does not vary much, then Var(β̂_j) will be large − and we can maximize S_{xjxj} by spreading X as much as possible
- We call this factor ¹/_{1-R_j²} a variance inflaction factor (the faraway package for R has a function called vif() you can use to compute it)
- Orthogonality means that variance is minimized when $R_i^2 = 0$

Model fit: Revisiting the OLS formulas

For the three parameters (simple regression):

the regression coefficient:

$$\hat{\beta}_1 = \frac{\sum (x_i - \bar{x})(y_i - \bar{y})}{\sum (x_i - \bar{x})^2}$$

► the intercept:

$$\hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x}$$

• and the residual variance σ^2 :

$$\hat{\sigma}^2 = \frac{1}{n-2} \sum [y_i - (\hat{\beta}_0 + \hat{\beta}_1 x_i)]^2$$

OLS formulas continued

Things to note:

- the prediction line is $\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x$
- the value $\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i$ is the predicted value for x_i
- the residual is $e_i = y_i \hat{y}_i$
- The residual sum of squares (RSS) = $\sum_i e_i^2$
- The estimate for σ^2 is the same as

$$\hat{\sigma}^2 = \mathsf{RSS}/(n-2)$$

Components of least squares model fit

TSS Total sum of squares $\sum (y_i - \bar{y})^2$

ESS Estimation or Regression sum of squares $\sum (\hat{y}_i - \bar{y})^2$ RSS Residual sum of squares $\sum e_i^2 = \sum (\hat{y}_i - y_i)^2$ The key to remember is that TSS = ESS + RSS How much of the variance did we explain?

$$R^{2} = 1 - \frac{RSS}{TSS} = 1 - \frac{\sum_{i=1}^{N} (y_{i} - \hat{y}_{i})^{2}}{\sum_{i=1}^{N} (y_{i} - \bar{y})^{2}} = \frac{\sum_{i=1}^{N} (\hat{y}_{i} - \bar{y})^{2}}{\sum_{i=1}^{N} (y_{i} - \bar{y})^{2}}$$

Can be interpreted as the *proportion of total variance explained by the model.*

- A much over-used statistic: it may not be what we are interested in at all
- Interpretation: the proportion of the variation in y that is explained linerally by the independent variables
- Defined in terms of sums of squares:

$$R^{2} = \frac{ESS}{TSS}$$
$$= 1 - \frac{RSS}{TSS}$$
$$= 1 - \frac{\sum(y_{i} - \hat{y}_{i})^{2}}{\sum(y_{i} - \bar{y})^{2}}$$

 Alternatively, R² is the squared correlation coefficient between y and ŷ

R^2 continued

- When a model has no intercept, it is possible for R² to lie outside the interval (0, 1)
- ► R² rises with the addition of more explanatory variables. For this reason we often report "adjusted R²": 1 - (1 - R²) n-1/(n-k-1) where k is the total number of regressors in the linear model (excluding the constant)
- ▶ Whether R² is high or not depends a lot on the overall variance in Y
- To R^2 values from different Y samples cannot be compared

R^2 continued

- Solid arrow: variation in y when X is unknown (TSS Total Sum of Squares $\sum (y_i \bar{y})^2$)
- ▶ Dashed arrow: variation in y when X is known (ESS Estimation Sum of Squares $\sum (\hat{y}_i - \bar{y})^2$)

R^2 decomposed

$$y = \hat{y} + \epsilon$$

$$Var(y) = Var(\hat{y}) + Var(e) + 2Cov(\hat{y}, e)$$

$$Var(y) = Var(\hat{y}) + Var(e) + 0$$

$$\sum(y_i - \bar{y})^2 / N = \sum(\hat{y}_i - \bar{\hat{y}})^2 / N + \sum(e_i - \hat{e})^2 / N$$

$$\sum(y_i - \bar{y})^2 = \sum(\hat{y}_i - \bar{\hat{y}})^2 + \sum(e_i - \hat{e})^2$$

$$\sum(y_i - \bar{y})^2 = \sum(\hat{y}_i - \bar{\hat{y}})^2 + \sum e_i^2$$

$$TSS = ESS + RSS$$

$$TSS / TSS = ESS / TSS + RSS / TSS$$

$$1 = R^2 + \text{unexplained variance}$$

Other model fit statistics

Where *d* is the number of predictors and $\hat{\sigma}^2$ is the estimated residual error variance,

► Mallows's C_p

$$C_p = \frac{1}{n} (RSS + 2d\hat{\sigma}^2)$$

Akaike information criterion (AIC)

$$\mathsf{AIC} = \frac{1}{n\hat{\sigma}^2}(RSS + 2d\hat{\sigma}^2)$$

(note: perfectly correlated with C_p for OLS)

BIC

$$\mathsf{BIC} = \frac{1}{n}(RSS + \log(n)d\hat{\sigma}^2)$$

penalizes the number of parameters (d) more than AIC

Adjusted R²

$$1 - (1 - R^2) \frac{n-1}{n-d-1}$$

Penalized regression

- Provides a way to shrink the variance of estimators (toward zero), to reduce the variance inflation problem that occurs as $p \rightarrow n$
- ▶ Also solves non-uniqueness of β estimates when n < p
- Some methods (e.g. lasso) even shrink estimates to zero, performing a type of variable selection
- Two most common methods:
 - ridge regression
 - lasso regression
- Both involve a "tuning parameter" λ whose value must be set based on optimizing some criterion (usually, predictive fit)

Ridge regression

• OLS: minimize the residual sum of squares, defined as:

$$RSS = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$
(1)
= $\sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)$ (2)

Ridge regression: minimize:

$$\sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right) - \lambda \sum_{j=1}^{p} \beta_j^2$$
(3)

$$= \mathsf{RSS} - \lambda \sum_{j=1}^{p} \beta_j^2 \tag{4}$$

Ridge regression continued

- The second term, λ ∑^p_{j=1} β²_j, is called a shrinkage penalty, and serves to shrink the estimates of β_i toward zero
 - ▶ when λ is large, β_j will shrink closer to zero, and when $\lambda \to \infty$, $\beta_j = 0$
 - when $\lambda = 0$, β_j is same as OLS solution
- Ridge regression will produce a different estimate of β_j for each value of λ
- So λ must be chosen carefully

The lasso

Lasso: minimize:

$$\sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right) - \lambda \sum_{j=1}^{p} |\beta_j|$$
 (5)

$$= \mathsf{RSS} - \lambda \sum_{j=1}^{p} |\beta_j| \tag{6}$$

The lasso uses an ℓ1 penalty – the ℓ1 norm of a coefficient vector β is given by ||β||₁ = ∑ |β_j| (note: the ridge penalty is also known as the ℓ2 norm)

Differences

- Lasso can actually shrink some β values to zero completely, while ridge regression always includes them with some penalty
- This property makes interpreting the lasso simpler
- ▶ No steadfast rule as to which performs better in applications
 - depends on the number of predictors actually related to the outcome
 - depends on λ