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n versus p (aka k)

I Classical regression framework: n > p. Without this
inequality, the OLS coefficients have no unique solution

I The variance of the estimates increases as p → n

I To predict problems where n < p, we need new strategies -
OLS and versions of OLS will not work

I Note: These are predictive methods, not methods for
explanation!



Strategies for coping with n < p

I Subset selection. Identifying a relevant subset of the p < n
predictors, and fitting an OLS model on the reduced set of
variables

I Shrinkage. Fitting a model involving all p predictors, but
penalizing (regularizing) the coefficients in such as way that
they are shrunken towards zero relative to the least squares
estimates

I has the effect of reducing variance
I may also perform variable selection (with the lasso)

I Dimension Reduction. Replacing the p predictors with
projections (linear combinations) of the predictors onto
M-dimensional subspace, where M < p, and then fitting an
OLS model on the reduced set of (combination) variables



Subset selection through sequential testing

I Such a model can be found using a series of significance tests
I Usual t or F tests of the coefficients, all using the same

significance level (e.g. 5%)

I Two basic versions are:
I Forward selection: start with a model with no explanatory

variables, and add new ones one at a time, until none of the
omitted ones are significant

I Backward selection: start with a model with all the variables
included, and remove nonsignificant ones, one at a time, until
the remaining ones are significant

I In practice, the most careful (and safest) procedure is a
combination of these two: stepwise selection



Stepwise model selection

I Pick a significance level, say α = 0.05

I Start forwards (from a model with nothing in it) or backwards
(from a model with everything in it)

I Then, repeat the following:
I Add to the current model the omitted variable for which the

P-value would be smallest, if this is smaller than α
I Remove the variable with the largest P-value, if this is bigger

than α
I Continue until all the variables in the current model have

P < α, and all the ones out of it would have P ≥ α
I This process can even be done “automatically” in one go, but

usually shouldn’t — needs more care than that



Example from HIE data

I Response variable: General Health Index at entry, n = 1113
I Potential explanatory variables: sex (dummy for men), age,

log of family income, weight, blood pressure and smoking (as
two dummy variables, for current and ex smokers)

I A haphazard collection of variables with no theoretical
motivation, purely for illustration of the stepwise procedure

I For simplicity, no interactions or nonlinear effects considered

I F -tests are used for the smoking variable (with two dummies),
t-tests for the rest

I Start backwards, i.e. from a full model with all candidate
variables included



Example: Health Index Experiment
Response variable: General Health Index

Model
Variable (1) (2) (4) (5) (6)

Age −0.138 −0.089 −0.128 −0.142 —

(< 0.001) (0.004) (< 0.001) (< 0.001)

Education — 1.157 0.990 0.981 1.117

(< 0.001) (< 0.001) (< 0.001) (< 0.001)

Income — — 0.275 0.277 0.219

(< 0.001) (< 0.001) (< 0.001)

Work — — — 0.002 −0.007

experience (0.563) (0.045)

(Constant) 74.777 58.801 59.417 59.723 54.666

R2 0.012 0.051 0.061 0.061 0.054

(P-values in parentheses)



Example from HIE data

1. In the full model, Blood pressure (P = 0.71), Smoking
(P = 0.30) and Sex (P = 0.19) are not significant at the 5%
level

I Remove Blood pressure

2. Now Smoking (P = 0.30) and Sex (P = 0.19) are not
significant

I Remove Smoking

3. If added to this model, Blood pressure is not be significant
(P = 0.71), so it can stay out

4. In this model, Sex (P = 0.21) is the only nonsignificant
variable, so remove it

5. Added (one at a time) to this model, neither Blood pressure
(P = 0.77) nor Smoking (P = 0.31) is significant, so they can
stay out



Example from HIE data

I So the final model includes Age, Log-income and Weight, all
of which are significant at the 5% level

I Here the nonsignificant variables were clear and unchanging
throughout, but this is definitely not always the case



Comments and caveats on stepwise model selection

I Often some variables are central to the research hypothesis,
and treated differently from other control variables

I e.g. in the Health Insurance Experiment, the insurance plan
was the variable of main interest

I Such variables are not dropped during a stepwise search, but
tested separately at the end

I Variables are added or removed one at a time, not several at
once

I For categorical variables with more than two categories, this
means adding or dropping all the corresponding dummy
variables at once

I Individual dummy variables (i.e. differences between particular
categories) may be tested separately (e.g. at the end)



Comments and caveats on stepwise model selection

I The models should always be hierarchical:
I if an interaction (e.g. coefficient of X1X2) is significant, main

effects (X1 and X2) may not be dropped
I if coefficient of X 2 is significant, X may not be dropped

I In practice, the possible interactions and nonlinear terms are
often not all considered in model selection

I Only those with some a priori plausibility

I Because it involves a sequence of multiple tests, the overall
stepwise procedure is not a significance test with significance
level α

I Not guaranteed to find a single “best” model, because it may
not exist: there may be several models satisfying the
conditions stated earlier



Changes of scale

I In short: Linear rescaling of variables will not change the
essential key statistics for inference, just their scale

I Suppose we reexpress xi as (xi + a)/b. Then:
I t, F , σ̂2, R2 unchanged
I β̂i → bβ̂i

I Suppose we rescale yi as (yi + a)/b. Then:
I t, F , R2 unchanged
I σ̂2 and β̂i will be rescaled by b

I Standardized variables and standardized coefficients: where
we replace the variables (all x and y) by their standardized
values (xi − X̄ )/SDx (e.g. for x). Standardized coefficients
are sometimes called “betas”.



More on standardized coefficients

Consider a standardized coefficient b∗ on a single variable x .

I Formula: b∗ = b SDx
SDy

I Intrepretation: the increase in standard deviations of y
associated with a one standard deviation increase in x

I Motivation: “standardizes” units so we can compare the
magnitude of different variables’ effects

I In practice: serious people never use these and you should not
either

I too tricky to interpret
I misleading since suggests we can compare apples and oranges
I too dependent on sample variation (just another version of R2)

I We can illustrate this in R, if we use the scale()[,1]

command to standardize the variables, which transforms them
into zi = (xi − X̄ )/SDx



Standardized coefficients illustrated

> dc <- d[complete.cases(d$votes1st, d$spend_total),] # remove missing

> m1.std <- lm(scale(dc$votes1st)[,1] ~ scale(dc$spend_total)[,1])

> coef(m1)

(Intercept) spend_total

683.7550298 0.2336056

> coef(m1.std)

(Intercept) scale(dc$spend_total)[, 1]

-1.100854e-16 7.395996e-01

> coef(m1)[2]*sd(dc$spend_total)/sd(dc$votes1st)

spend_total

0.7395996



Collinearity

I When some variables are exact linear combinations of others
then we have exact collinearity, and there is no unque least
squares estimate of β

I When X variables are correlated, then we have
(multi)collinearity

I Detecting (multi)collinearity:
I look at correlation matrix of predictors for pairwise correlations
I regress xk on all other predictors to produce R2

k , and look for
high values (close to 1.0)

I Examine eigenvalues of X ′X



Collinearity continued

I Define:
Sxjxj =

∑
i

(xij − x̄j)
2

then

Var(β̂j) = σ2

(
1

1− R2
j

)
1

Sxjxj

I So collinearity’s main consequence is to reduce the efficiency
of our estimates of β

I So if xj does not vary much, then Var(β̂j) will be large – and
we can maximize Sxjxj by spreading X as much as possible

I We call this factor 1
1−R2

j
a variance inflaction factor (the

faraway package for R has a function called vif() you can
use to compute it)

I Orthogonality means that variance is minimized when R2
j = 0



Model fit: Revisiting the OLS formulas

For the three parameters (simple regression):

I the regression coefficient:

β̂1 =

∑
(xi − x̄)(yi − ȳ)∑

(xi − x̄)2

I the intercept:
β̂0 = ȳ − β̂1x̄

I and the residual variance σ2:

σ̂2 =
1

n − 2

∑
[yi − (β̂0 + β̂1xi )]2



OLS formulas continued

Things to note:

I the prediction line is ŷ = β̂0 + β̂1x

I the value ŷi = β̂0 + β̂1xi is the predicted value for xi
I the residual is ei = yi − ŷi
I The residual sum of squares (RSS) =

∑
i e

2
i

I The estimate for σ2 is the same as

σ̂2 = RSS/(n − 2)



Components of least squares model fit

TSS Total sum of squares
∑

(yi − ȳ)2

ESS Estimation or Regression sum of squares
∑

(ŷi − ȳ)2

RSS Residual sum of squares
∑

e2i =
∑

(ŷi − yi )
2

The key to remember is that TSS = ESS + RSS



R2

How much of the variance did we explain?

R2 = 1− RSS

TSS
= 1−

∑N
i=1(yi − ŷi )

2∑N
i=1(yi − ȳ)2

=

∑N
i=1(ŷi − ȳ)2∑N
i=1(yi − ȳ)2

Can be interpreted as the proportion of total variance explained by
the model.



R2

I A much over-used statistic: it may not be what we are
interested in at all

I Interpretation: the proportion of the variation in y that is
explained lineraly by the independent variables

I Defined in terms of sums of squares:

R2 =
ESS

TSS

= 1− RSS

TSS

= 1−
∑

(yi − ŷi )
2∑

(yi − ȳ)2

I Alternatively, R2 is the squared correlation coefficient between
y and ŷ



R2 continued

I When a model has no intercept, it is possible for R2 to lie
outside the interval (0, 1)

I R2 rises with the addition of more explanatory variables. For
this reason we often report “adjusted R2”: 1− (1−R2) n−1

n−k−1
where k is the total number of regressors in the linear model
(excluding the constant)

I Whether R2 is high or not depends a lot on the overall
variance in Y

I To R2 values from different Y samples cannot be compared



R2 continued

I Solid arrow: variation in y when X is unknown (TSS Total Sum of
Squares

∑
(yi − ȳ)2)

I Dashed arrow: variation in y when X is known (ESS Estimation
Sum of Squares

∑
(ŷi − ȳ)2)



R2 decomposed

y = ŷ + ε

Var(y) = Var(ŷ) + Var(e) + 2Cov(ŷ , e)

Var(y) = Var(ŷ) + Var(e) + 0∑
(yi − ȳ)2/N =

∑
(ŷi − ¯̂y)2/N +

∑
(ei − ê)2/N∑

(yi − ȳ)2 =
∑

(ŷi − ¯̂y)2 +
∑

(ei − ê)2∑
(yi − ȳ)2 =

∑
(ŷi − ¯̂y)2 +

∑
e2i

TSS = ESS + RSS

TSS/TSS = ESS/TSS + RSS/TSS

1 = R2 + unexplained variance



Other model fit statistics

Where d is the number of predictors and σ̂2 is the estimated
residual error variance,

I Mallows’s Cp

Cp =
1

n
(RSS + 2d σ̂2)

I Akaike information criterion (AIC)

AIC =
1

nσ̂2
(RSS + 2d σ̂2)

(note: perfectly correlated with Cp for OLS)

I BIC

BIC =
1

n
(RSS + log(n)d σ̂2)

penalizes the number of parameters (d) more than AIC

I Adjusted R2

1− (1− R2) n−1
n−d−1



Penalized regression

I Provides a way to shrink the variance of estimators (toward
zero), to reduce the variance inflation problem that occurs as
p → n

I Also solves non-uniqueness of β estimates when n < p

I Some methods (e.g. lasso) even shrink estimates to zero,
performing a type of variable selection

I Two most common methods:
I ridge regression
I lasso regression

I Both involve a ”tuning parameter” λ whose value must be set
based on optimizing some criterion (usually, predictive fit)



Ridge regression

I OLS: minimize the residual sum of squares, defined as:

RSS =
n∑

i=1

(yi − ŷi )
2 (1)

=
n∑

i=1

yi − β0 −
p∑

j=1

βjxij

 (2)

I Ridge regression: minimize:

n∑
i=1

yi − β0 −
p∑

j=1

βjxij

− λ p∑
j=1

β2j (3)

= RSS− λ
p∑

j=1

β2j (4)



Ridge regression continued

I The second term, λ
∑p

j=1 β
2
j , is called a shrinkage penalty,

and serves to shrink the estimates of βj toward zero
I when λ is large, βj will shrink closer to zero, and when
λ→∞, βj = 0

I when λ = 0, βj is same as OLS solution

I Ridge regression will produce a different estimate of βj for
each value of λ

I So λ must be chosen carefully



The lasso

I Lasso: minimize:

n∑
i=1

yi − β0 −
p∑

j=1

βjxij

− λ p∑
j=1

|βj | (5)

= RSS− λ
p∑

j=1

|βj | (6)

I The lasso uses an `1 penalty – the `1 norm of a coefficient
vector β is given by ‖β‖1 =

∑
|βj |

(note: the ridge penalty is also known as the `2 norm)



Differences

I Lasso can actually shrink some β values to zero completely,
while ridge regression always includes them with some penalty

I This property makes interpreting the lasso simpler
I No steadfast rule as to which performs better in applications

I depends on the number of predictors actually related to the
outcome

I depends on λ


