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How do we get "true” condition?

> In some domains: through more expensive or extensive tests
> In social sciences: typically by expert annotation or coding

» A scheme should be tested and reported for its reliability



Inter-rater reliability

Different types are distinguished by the way the reliability data is

obtained.
Type Test Design  Causes of Disagreements Strength
Stability  test-retest intraobserver inconsistencies weakest
Reproduc- test-test intraobserver inconsistencies +  medium
ibility interobserver disagreements
Accuracy test-standard intraobserver inconsistencies +  strongest

interobserver disagreements +
deviations from a standard




Measures of agreement

» Percent agreement Very simple: (number of agreeing ratings)
/ (total ratings) * 100%
» Correlation

v

(usually) Pearson’s r, aka product-moment correlation
. _ 1 n A=A\ (Bi=B
Formula: rap = =7 > 1.4 ( = ) ( )

SB
May also be ordinal, such as Spearman’s rho or Kendall's tau-b

Range is [0,1]
> Agreement measures

v

v

v

» Take into account not only observed agreement, but also
agreement that would have occured by chance

» Cohen's k is most common

» Krippendorf's « is a generalization of Cohen's

» Both range from [0,1]



Reliability data matrixes

Example here used binary data (from Krippendorff)
Article: |1 2 3 4 5 6 7 8 9 10
CoderA|1 1 0 0 0O OO O O O
CoderB|0O 1 1 0 0 1 0 1 0 O

» A and B agree on 60% of the articles: 60% agreement

v

Correlation is (approximately) 0.10

v

Observed disagreement: 4

v

Expected disagreement (by chance): 4.4211
=0.095

v

Krippendorff's o = 1 — %: —1_ ﬁ

v

Cohen’s k (nearly) identical



Naive Bayes classification

» The following examples refer to “words” and “documents”
but can be thought of as generic “features” and ‘“cases”

» We will being with a discrete case, and then cover continuous
feature values

» Objective is typically MAP: identification of the maximum a
posteriori class probability



Multinomial Bayes model of Class given a Word

Consider J word types distributed across / documents, each
assigned one of K classes.

At the word level, Bayes Theorem tells us that:

P(wj|ck)P(ck)

P(cklw)) = P(w)

For two classes, this can be expressed as

P(wjl|ck)P(ck)

= Pwla)P(c) + P(wjles)Ple ) ()




Multinomial Bayes model of Class given a Word
Class-conditional word likelihoods

N P(wj|ci) P(ck)
P(ci|w;) = p(WJ-yck)P(ck)JJr P(wj|c-k)P(c-k)

» The word likelihood within class

» The maximum likelihood estimate is simply the proportion of
times that word j occurs in class k, but it is more common to
use Laplace smoothing by adding 1 to each oberved count
within class



Multinomial Bayes model of Class given a Word
Word probabilities

P(wj|ci) P(ck)

P(ck|wj) = J
! P(w))

> This represents the word probability from the training corpus

» Usually uninteresting, since it is constant for the training
data, but needed to compute posteriors on a probability scale



Multinomial Bayes model of Class given a Word
Class prior probabilities

B P(wj|e) P(ck)
PLk™) = BlasTedPlen) + Plwlen) Pler)

» This represents the class prior probability
» Machine learning typically takes this as the document
frequency in the training set

» This approach is flawed for scaling, however, since we are
scaling the latent class-ness of an unknown document, not
predicting class — uniform priors are more appropriate



Multinomial Bayes model of Class given a Word
Class posterior probabilities

B P(wj|ci) P(ck)
P(ck|w;) = p(,,,,j,Ck),D(Ck)JJr P(w;|cok) P(c-k)

» This represents the posterior probability of membership in
class k for word j

» Under certain conditions, this is identical to what LBG (2003)
called Py,

» Under those conditions, the LBG “wordscore” is the linear
difference between P(ck|w;) and P(c_k|w;)



“Certain conditions”

» The LBG approach required the identification not only of
texts for each training class, but also “reference” scores
attached to each training class

» Consider two “reference” scores s; and s, attached to two
classes k =1 and k = 2. Taking P; as the posterior
P(k = 1|lw =) and P, as P(k = 2|w = j), A generalised
score sf for the word j is then

s5 = siP1+ 5P

= 51P1+ (1 - P1)
= 51P1+5—5P)
= Pi(s1— )+



Moving to the document level

» The “Naive” Bayes model of a joint document-level class
posterior assumes conditional independence, to multiply the
word likelihoods from a “test” document, to produce:

P(wjlc)

P(c|d) = P(c) . W

» This is why we call it “naive”: because it (wrongly) assumes:

» conditional independence of word counts
» positional independence of word counts



Naive Bayes Classification Example

(From Manning, Raghavan and Schiitze, Introduction to
Information Retrieval)

» Table 13.1 Data for parameter estimation examples.

docID words in document in ¢ = China?
training set 1 Chinese Beijing Chinese yes

2 Chinese Chinese Shanghai yes

3 Chinese Macao yes

4 Tokyo Japan Chinese no
test set 5 Chinese Chinese Chinese Tokyo Japan ?



Naive Bayes Classification Example

Example 13.1:  For the example in Table 13.1, the multinomial parameters we
need to classify the test document are the priors P(c) = 3/4 and P(c) = 1/4 and the
following conditional probabilities:

P(Chineselc) = (5+1)/(8+6)=6/14=3/7
P(Tokyo|c) = P(Japan|c) = (0+1)/(8+6)=1/14
P(Chineselc) = (1+1)/(3+6)=2/9
D(Tokyo|c) = P(Japan[c) = (1+1)/(346)=2/9

The denominators are (8 + 6) and (3 + 6) because the lengths of text; and textz are 8
and 3, respectively, and because the constant B in Equation (13.7) is 6 as the vocabu-
lary consists of six terms.

We then get:

Plelds) o 3/4-(3/7)%-1/14-1/14 = 0.0003.
P(elds) o 1/4-(2/9)%-2/9-2/9 ~ 0.0001.

Thus, the classifier assigns the test document to ¢ = China. The reason for this clas-
sification decision is that the three occurrences of the positive indicator Chinese in d5
outweigh the occurrences of the two negative indicators Japan and Tokyo.



Naive Bayes with continuous covariates

library(e1071) # has a normal distribution Naive Bayes

# Congresstonal Voting Records of 1984 (abstentions treated as missing)
data(HouseVotes84, package="mlbench")
model <- naiveBayes(Class ~ ., data = HouseVotes84)

# predict the first 10 Congresspeople
data.frame(Predicted = predict(model, HouseVotes84[1:10,-1]),
Actual = HouseVotes84[1:10,1],
postPr = predict(model, HouseVotes84[1:10, -1], type = "raw"))

## Predicted Actual postPr.democrat postPr.republican
## 1 republican republican 1.029209e-07 9.999999e-01
## 2 republican republican 5.820415e-08 9.999999e-01
## 3 republican democrat 5.684937e-03 9.943151e-01
## 4 democrat  democrat 9.985798e-01 1.420152e-03
## 5 democrat  democrat 9.666720e-01 3.332802e-02
## 6 democrat  democrat 8.121430e-01 1.878570e-01
## 7 republican democrat 1.751512e-04 9.998248e-01
## 8 republican republican 8.300100e-06 9.999917e-01
## 9 republican republican 8.277705e-08 9.999999e-01
## 10 democrat democrat 1.000000e+00 5.029425e-11



Overall prediction performance

# now all of them: this is the resubstitution error
(mytable <- table(predict(model, HouseVotes84[,-1]), HouseVotes84$Class))

#it

## democrat republican
## democrat 238 13
## republican 29 155

prop.table(mytable, margin=1)

##

## democrat republican
##  democrat  0.94820717 0.05179283
##  republican 0.15760870 0.84239130



With Laplace smoothing

model <- naiveBayes(Class ~ ., data = HouseVotes84, laplace = 3)
(mytable <- table(predict(model, HouseVotes84[,-1]), HouseVotes84$Class))

##

## democrat republican
##  democrat 237 12
##  republican 30 156

prop.table(mytable, margin=1)

##

## democrat republican
##  democrat  0.95180723 0.04819277
##  republican 0.16129032 0.83870968



k-nearest neighbour

» A non-parametric method for classifying objects based on the
training examples taht are closest in the feature space

> A type of instance-based learning, or “lazy learning” where
the function is only approximated locally and all computation
is deferred until classification

» An object is classified by a majority vote of its neighbors, with
the object being assigned to the class most common amongst
its k nearest neighbors (where k is a positive integer, usually
small)

» Extremely simple: the only parameter that adjusts is k
(number of neighbors to be used) - increasing k smooths the
decision boundary



k-NN Example: Red or Blue?
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Classifying amicus curiae briefs (Evans et al 2007)

## kNN classification
require(class)

## Loading required package: class
require(quantedaData)

## Loading required package: quantedaData
## Loading required package: quanteda

data(amicusCorpus)

# create a matriz of documents and features

amicusDfm <- dfm(amicusCorpus, ignoredFeatures=stopwords("english"),
stem=TRUE, verbose=FALSE)

## note: using english builtin stopwords, but beware that one size may not fit

# threshold-based feature selection
amicusDfm <- trim(amicusDfm, minCount=10, minDoc=20)

## Features occurring less than 10 times: 9920
## Features occurring in fewer than 20 documents: 11381



Classifying amicus curiae briefs (Evans et al 2007)

# tf-idf weighting

amicusDfm <- weight(amicusDfm, "tfidf")

# partition the training and test sets

train <- amicusDfm[!is.na(docvars(amicusCorpus, "trainclass")), ]
test <- amicusDfm[!is.na(docvars(amicusCorpus, "testclass")), ]
trainclass <- docvars(amicusCorpus, "trainclass")[1:4]



Classifying amicus curiae briefs (Evans et al 2007)

# classifier with k=1
classified <- knn(train, test, trainclass, k=1)
table(classified, docvars(amicusCorpus, "testclass")[-c(1:4)])

#it
## classified AP AR
#it P 13 6

## R 673



Classifying amicus curiae briefs (Evans et al 2007)

# classifier with k=2
classified <- knn(train, test, trainclass, k=2)
table(classified, docvars(amicusCorpus, "testclass")[-c(1:4)])

#it
## classified AP AR
#it P 9 33

## R 10 46



k-nearest neighbour issues: Dimensionality

» Distance usually relates to all the attributes and assumes all
of them have the same effects on distance

» Misclassification may results from attributes not confirming to
this assumption (sometimes called the “curse of
dimensionality” ) — solution is to reduce the dimensions

» There are (many!) different metrics of distance



(Very) General overview to SVMs

» Generalization of maximal margin classifier

» The idea is to find the classification boundary that maximizes
the distance to the marginal points

» Unfortunately MMC does not apply to cases with non-linear
decision boundaries



No solution to this using support vector classifier
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One way to solve this problem

» Basic idea: If a problem is non-linear, don't fit a linear model

» Instead, map the problem from the input space to a new
(higher-dimensional) feature space

» Mapping is done through a non-linear transformation using
suitably chosen basis functions

» the “kernel trick”: using kernel functions to enable operations
in the high-dimensional feature space without computing
coordinates of that space, through computing inner products
of all pairs of data in the feature space

» different kernel choices will produce different results
(polynomial, linear, radial basis, etc.)

» Makes it possible to then use a linear model in the feature
space



SVMs represent the data in a higher dimensional projection using a
kernel, and bisect this using a hyperplane

Gene 2

Gene 1

Data is not linearly separable Data is linearly separable in the
in the input space feature space obtained by a kernel



This is only needed when no linear separation plane exists - so not
needed in second of these

Gene 2 Gene 2

Gene 1



Different “kernels” can represent different decision
boundaries

» This has to do with different projections of the data into
higher-dimensional space

» The mathematics of this are complicated but solveable as
forms of optimization problems - but the kernel choice is a
user decision




Precision and recall

» [llustration framework

True condition
Positive Negative

Positive

Prediction

Negative




Precision and recall and related statistics

P true positives
> Precision: true positives + false positives
» Recall: true positives
" true positives + false negatives
i Correctly classified
> Accuracy. Total number of cases
» F1 =2 Precision X Recall

Precision 4 Recall
(the harmonic mean of precision and recall)



Example: Computing precision /recall

Assume:

» We have a sample in which 80 outcomes are really positive (as
opposed to negative, as in sentiment)

» Our method declares that 60 are positive

» Of the 60 declared positive, 45 are actually positive

Solution:

Precision = (45/(45 + 15)) = 45/60 = 0.75
Recall = (45/(45 + 35)) = 45/80 = 0.56



Accuracy?

True condition

Prediction

Positive

Negative

Positive

80

Negative

60



add in the cells we can compute

True condition

Prediction

Positive

Negative

80

Positive

Negative

60



Receiver Operating Characteristic (ROC) plot

Proportion of 0's Correctly Predicted
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