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Classification and prediction as goals

» Machine learning focuses on identifying classes
(classification), while social science is typically interested”

» estimating marginal effects
» measuring things (latent trait scaling)
> Regression analysis is the workhorse of social science statistical
analysis, but can also be used to predict out of sample
» “Statistical learning” view is that regression is a “supervised”
machine learning method for continuously-valued outcomes



Supervised v. unsupervised methods compared

» Two different approaches:
» Supervised methods require a training set that exmplify
constrasting classes, identified by the researcher
» Unsupervised methods scale differences and identify patterns,
without requiring a training step
» Relative advantage of supervised methods: You set the input
dimensions

» Relative disadvantage of supervised methods:
You need to “know” in advance the dimensions being scaled,
in order to train or fit the model



Supervised v. unsupervised methods: Examples

» General examples:

» Supervised: Regression, logistic regression, Naive Bayes,
k-Nearest Neighbor, Support Vector Machines (SVM)
» Unsupervised: correspondence analysis, IRT models, factor
analytic approaches
» Lots of applications in text analysis

» Supervised: Wordscores (LBG 2003); SVMs (Yu, Kaufman and
Diermeier 2008); Naive Bayes (Evans et al 2007)

» Unsupervised “Wordfish” (Slapin and Proksch 2008);
Correspondence analysis (Schonhardt-Bailey 2008);
two-dimensional IRT (Monroe and Maeda 2004)



How do we get "true” condition?

> For regression examples: We have a sample with a
continuously-valued dependent variable
» In some domains: through more expensive or extensive tests
» May also be through expert annotation or coding
» A scheme should be tested and reported for its reliability



Generalization and overfitting

» Generalization: A classifier or a regression algorithm learns to
correctly predict output from given inputs not only in
previously seen samples but also in previously unseen samples

» Overfitting: A classifier or a regression algorithm learns to
correctly predict output from given inputs in previously seen
samples but fails to do so in previously unseen samples. This
causes poor prediction/generalization



How model fit is evaluated

» For discretely-valued outcomes (class prediction): Goal is to
maximize the frontier of precise identification of true condition
with accurate recall, defined in terms of false positives and
false negatives

» will define formally later

» For continuously-valued outcomes: minimize Root Mean
Squared Error (RMSE)



Regression as a prediction method

» Training step: fitting a model to data for which the outcome
variable Y; is known

» Test step: predicting out of sample Y; for a new configuration
of data input values X;

» Evaluation: based on RMSE, or average

S(Yi— V)



Example

par (mar=c(4,4,1,1))

x <- ¢(0,3,1,0,6,5,3,4,10,8)

y <- ¢(12,13,15,19,26,27,29,31,40,48)

plot(x, y, xlab="Number of prior convictions (X)",
ylab="Sentence length (Y)", pch=19)

abline(h=c(10,20,30,40), col="grey70")
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Least squares formulas

For the three parameters (simple regression):

> the regression coefficient:

5 - Zli =R ~7)
> (xi — x)?
» the intercept: A A
0=y — Pix

» and the residual variance o2:

L S~ (ot )P
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Least squares formulas continued

Things to note:
> the prediction line is y = Bo + le
» the value §; = o + Bix; is the predicted value for x;
> the residual is ¢; = y; — y;
» The residual sum of squares (RSS) = 5. €?

» The estimate for o2 is the same as

52 =RSS/(n—2)



Example to show fomulas in R

> x <- ¢(0,3,1,0,6,5,3,4,10,8)
>y <- ¢(12,13,15,19,26,27,29,31,40,48)
> (data <- data.frame(x, y, xdev=(x-mean(x)), ydev=(y-mean(y)),

+ xdevydev=((x-mean(x))*(y-mean(y))),

+ xdev2=(x-mean(x)) "2,

+ ydev2=(y-mean(y))"~2))
x y xdev ydev xdevydev xdev2 ydev2

1 0 12 -4 -14 56 16 196

2 3 13 -1 -13 13 1 169

3 115 -3 -11 33 9 121

4 0 19 -4 =7 28 16 49

5 6 26 2 0 0

6 5 27 1 1 1 1 1

7 3 29 -1 3 -3 1 9

8 4 31 0 5 0 0 25

9 10 40 6 14 84 36 196

10 8 48 4 22 88 16 484

> (SP <- sum(data$xdevydev))

[11 300

> (8Sx <- sum(data$xdev2))

[1] 100

> (SSy <- sum(data$ydev2))

[1] 1250

> (bl <- SP / SSx)

[1] 3

<« /1A - 2N 4NN



From observed to “predicted” relationship

v

In the above example, ﬁAo = 14, Bl =3

v

This linear equation forms the regression line

v

The regression line always passes through two points:
> the point (x =0,y = )
» the point (X, y) (the average X predicts the average Y)

v

The residual sum of squares (RSS) = 5. €2

v

The regression line is that which minimizes the RSS



Ordinary Least Squares (OLS)

» Objective: minimize Y e? = > (Y; — Yi)2, where
> Y= by + b X; .
> error e, = (Y; — Y))

. XK Y)
> (Xi — X)
XY
XX

» The intercept is: by = Y — b X



OLS rationale

» Formulas are very simple

» Closely related to ANOVA (sums of squares decomposition)

» Predicted Y is sample mean when Pr(Y|X) =Pr(Y)
> In the special case where Y has no relation to X, b; = 0, then
OLS fit is simply Y = by
» Why? Because by = Y — b X, so Y=Y
» Prediction is then sample mean when X is unrelated to Y

» Since OLS is then an extension of the sample mean, it has the
same attractice properties (efficiency and lack of bias)

> Alternatives exist but OLS has generally the best properties
when assumptions are met



OLS in matrix notation

» Formula for coefficient f:

Y =

X'y

X'y
(X'X)IX'y =
8 =

XB+ €
X'XB+ X'e
X'XB+0
B+0
(X'X)7tX'y

» Formula for variance-covariance matrix: o2(X’X)™1

» In simple case where y = By + b1 * x, this gives
02/ > (x; — X)? for the variance of (3;
» Note how increasing the variation in X will reduce the variance

of ,81



The “hat” matrix

» The hat matrix H is defined as:
B — (Xlx)—lxly
Xp X(X'X)"IX'y
y = Hy

v

H = X(X'X)"1X" is called the hat-matrix

Other important quantities, such as §, > e? (RSS) can be
expressed as functions of H

v

v

Corrections for heteroskedastic errors (“robust” standard
errors) involve manipulating H



Some important OLS properties to understand

Appliesto y = a+ Bx + ¢

» If 3 =0 and the only regressor is the intercept, then this is
the same as regressing y on a column of ones, and hence
« = y — the mean of the observations

» If & = 0 so that there is no intercept and one explanatory

variable x, then g = %fﬁ

» If there is an intercept and one explanatory variable, then

5 _ Tds-A0i-9)
> (xi — X)?
> ixi = X)yi

2206 =)




Some important OLS properties (cont.)

» If the observations are expressed as deviations from their
means, yx = y — y and x* = x — X, then 8 =Y x*y*/ > x*2

» The intercept can be estimated as y — 8x. This implies that
the intercept is estimated by the value that causes the sum of
the OLS residuals to equal zero.

» The mean of the y values equals the mean y values — together
with previous properties, implies that the OLS regression line
passes through the overall mean of the data points



Normally distributed errors

E(yix)

E(yix = x3}

E(yix = x;)

E(ylx = xg)

oo e e i o e ]

o+ fBx

Nie + By, %)




OLSinR

> dail <- read.dta("dail2002.dta")
> mdl <- Im(voteslst ~ spend_total*incumb + minister, data=dail)
> summary (md1)

Call:
Im(formula = voteslst

spend_total * incumb + minister, data = dail)

Residuals:
Min 1Q Median 3Q Max
-565556.8 -979.2 -262.4 877.2 6816.5

Coefficients:

Estimate Std. Error t value Pr(>|tl)
(Intercept) 469.37438 161.54635 2.906 0.00384 *x*
spend_total 0.20336 0.01148 17.713 < 2e-16 *x¥x*
incumb 5150.75818 536.36856 9.603 < 2e-16 ***
minister 1260.00137 474.96610 2.653 0.00826 *x

spend_total:incumb -0.14904 0.02746 -5.428 9.28e-08 *x*x
Signif. codes: 0 “#%x' 0.001 “*x' 0.01 “*' 0.05 ~.' 0.1 ~ ' 1

Residual standard error: 1796 on 457 degrees of freedom
(2 observations deleted due to missingness)

Multiple R-squared: 0.6672, Adjusted R-squared: 0.6643

F-statistic: 229 on 4 and 457 DF, p-value: < 2.2e-16



OLS in Stata

. use dail2002
(Ireland 2002 Dail Election - Candidate Spending Data)

. gen spendXinc
(2 missing values generated)

= spend_total * incumb

. reg voteslst spend_total incumb minister spendXinc

Source | Ss af MS Number of obs = 462
F( 4, 457) = 229.05

Model | 2.9549e+09 4 738728297 Prob > F = 0.0000
Residual | 1.4739e+09 457 3225201.58 R-squared = 0.6672
Adj R-squared = 0.6643

Total | 4.4288e+09 461 9607007.17 Root MSE = 1795.9
votesist | Coef.  Std. Err. t P>|t| [95% Conf. Intervall
spend_total | .2033637 .0114807 17.71 0.000 .1808021 .2259252
incumb | 5150.758 536.3686 9.60 0.000 4096.704 6204.813
minister | 1260.001 474.9661 2.65 0.008 326.613 2193.39
spendXinc | -.1490399 .0274584 -5.43 0.000 -.2030003 -.0950794
_cons | 469.3744 161.5464 2.91 0.004 151.9086 786.8402




Sums of squares (ANOVA)

TSS Total sum of squares > (y; — y)?
ESS Estimation or Regression sum of squares » (9, — )7)2
RSS Residual sum of squares Y e? = > (9 — yi)?

The key to remember is that TSS = ESS + RSS



Examining the sums of squares

yhat <- mdl$fitted.values # uses the 1Im object mdl from previous
ybar <- mean(mdl$modell[,1])

y <- mdl$modell,1] # can't use dail$voteslst since diff N
TSS <- sum((y-ybar)~2)

ESS <- sum((yhat-ybar)~2)

RSS <- sum((yhat-y)~2)

> RSS

[1] 1473917120

> sum(mdl$residuals”2)

[1] 1473917120

> (r2 <- ESS/TSS)

[1] 0.6671995

> (adjr2 <- (1 - (1-r2)*(462-1)/(462-4-1)))

[1] 0.6642865

> summary (mdl) $r.squared # note the call to summary()
[1] 0.6671995

> RSS/457

[1] 3225202

> sqrt (RSS/457)

[1] 1795.885

> summary(mdl)$sigma

[1] 1795.885

V V.V V VYV



Regression model return values

Here we will talk about the quantities returned with the 1m()
command and 1m class objects.

Table 10.1 Extractor functions for the result of In ()

summary ()
plot )
coef ()
residuals ()
fitted()
deviance()
predict ()
anova{)
ATCO)

returns summary information about the regression
makes diagnostic plots

returns the coefficients

returns the residuals (can be abbreviated resid())
returns fitted values, ¥;

returns RSS

performs predictions

finds various sums of squares

is used for model selection




Uncertainty in regression models: the linear case revisited

» Suppose we regress y on X to produce b = (X'X)"1 X'y

» Then we set explanatory variables to new values XP to predict
yp
» The prediction Y” will have two forms of uncertainty:
1. estimation uncertainty that can be reduced by increasing the
sample size. Estimated a y? = XPb and depends on sample
size through b
2. fundamental variability comes from variability in the dependent
variable around the expected value E(Y?) = u = XPj3 — even
if we knew the true 8



Estimation uncertainty and fundamental variability

» We can decompose this as follows:

YP = XPbpb+¢€P
Var(YP) = Var(XPb)+ Var(eP)
= XPVar(b)(XP) + o°I
= o?XP((XP)XP)"t 4 021
= estimation uncertainty + fundamental variability
> It can be shown that the distribution of Y* is:
YP ~ N(XPB, XPVar(b)(XP))

» and that the unconditional distribution of YP is:

YP ~ N(XPB, XPVar(b)(XP) + o2I)



Confidence intervals for predictions

» For any set of explanatory variables xp, the predicted response
is )70 = X(/)B

» But this prediction also comes with uncertainty, and by
extension, with a confidence interval

» Two types:

» predictions of future observations: based on the prediction plus
the variance of ¢ (Note: this is what we usually want)

Yo t4 16/ T+ x5(XX) Txo

» prediction of mean response: the average value of a yg with the
characteristics xg — only takes into account the variance of §

Yo+ t2 61 /x4(X"X)"1x



Confidence intervals for predictions in R

> summary (m1)$coeff

Estimate Std. Error t value Pr(>ltl)
(Intercept) 464.5955332 162.59752848 2.857335 4.466694e-03
spend_total 0.2041449  0.01155236 17.671273 1.154515e-53
incumb 4493.3251289 478.80828470 9.384393 2.962201e-19
spend_total:incumb  -0.1068943  0.02254283 -4.741832 2.832798e-06
> fivenum(dail$spend_total) # what is typical spending profile
[1] 0.00 5927.32 14699.12 20812.66 51971.28
> x0 <- c(1, 75000, 1, 75000) # set some predictor values
> (yO <- sum(xO*coef (m1))) # compute predicted response
[1] 12251.71
> fivenum(dail$votesist) # how typical is this response?

[1] 19.0 1151.5 3732.0 6432.0 14742.0

> quantile(dail$votesist, .99, na.rm=T) # versus 99th percentile
99%

11138.44

> x0.df <- data.frame(incumb=1, spend_total=75000)

> predict(ml, x0.df)

1

12251.71

> predict(ml, x0.df, interval="confidence")
fit lur upr

1 12251.71 10207.33 14296.09

> predict(ml, x0.df, interval="prediction")
fit lwr upr

1 12251.71 8153.068 16350.36



Fundamental and estimation variability for non-linear forms

> For well-known cases, we known both the expectation and the
fundamental variability, e.g.
» Poisson E(Y) = X8, Var(Y) = A
> logistic E(Y) = o=z, Var(Y) = 7(1 — )
» Calculating the estimation variability is harder, but can be
done using a linear approximation from the Taylor series. The
Taylor series approximation of y? = g(b) is:

9P = g(b) = g(8) + £'(B)(b— ) + -

where g’(3) is the first derivative of the functional form g(3)
with respect to 3
> If we drop all but the first two terms, then

Var(YP) =~ Varlg(8)] + Varlg'(8)(b — 5)]
g'(B)Var(b)g'(B)

» This is known as the Delta method for calculating standard
errors of predictions



Precision and recall

» [llustration framework

True condition
Positive Negative

Positive

Prediction

Negative




Precision and recall and related statistics

P true positives
> Precision: true positives + false positives
» Recall: true positives
" true positives + false negatives
i Correctly classified
> Accuracy. Total number of cases
» F1 =2 Precision X Recall

Precision 4 Recall
(the harmonic mean of precision and recall)



Example: Computing precision /recall

Assume:

» We have a sample in which 80 outcomes are really positive (as
opposed to negative, as in sentiment)

» Our method declares that 60 are positive

» Of the 60 declared positive, 45 are actually positive

Solution:

Precision = (45/(45 + 15)) = 45/60 = 0.75
Recall = (45/(45 + 35)) = 45/80 = 0.56



Accuracy?

True condition

Prediction

Positive

Negative

Positive

80

Negative

60



add in the cells we can compute

True condition

Prediction

Positive

Negative

80

Positive

Negative

60



but need True Negatives and N to compute accuracy

[ True condition
Positive Negative

Positive 60

Prediction

Negative

80



assume 10 True Negatives:

[ True condition

Positive Negative
Positive 60
Prediction
Negative 45
80 25 105
Accuracy = (45 + 10),/105 = 0.52

F1=2%(0.75%0.56)/(0.75+ 0.56) = 0.64



now assume 100 True Negatives:

[ True condition

Positive Negative
Positive 60
Prediction
Negative 135
80 115 195
Accuracy = (45 + 100)/195 =0.74

F1=2%(0.75%0.56)/(0.75+ 0.56) = 0.64



Receiver Operating Characteristic (ROC) plot
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Estimating uncertainty through simulation

» King, Timz, and Wittenberg (2000) propose using statistical
simulation to estimate uncertainty
> Notation:
stochastic component Y; ~ f(6;, «)
systmatic component 6; = g(X;, 8)
For example in a linear-normal model,
Y; = N(ui,0°) and y; = XiB
simulated parameter vector 4 = vec(3, &)
The central limit theorem tells us we can simulate v as

5 ~N(%, V(5))



Simulating predicted values

1. Using the algorithm in the previous subsection, draw
one value of the vector y = vec(B,0).

2. Decide which kind of predicted value you wish to
compute, and on that basis choose one value for each
explanatory variable. Denote the vector of such val-
ues X...

3. Taking the simulated effect coefficients from the top
portion of ¥, compute 6, = g(X_,B), where g(-,-) is
the systematic component of the statistical model.

4. Simulate the outcome variable Y, by taking a random
draw from f(0,,@), the stochastic component of the
statistical model.

Repeat this M = 1000 times to approximate the entire probability
distribution of Y,. Using this estimated distribution we can
compute mean and SDs which will approximate the predicted
values and their error.



Simulating expected values

1. Following the procedure for simulating the param-
eters, draw one value of the vector ¥ = vec(f3, ).

2. Choose one value for each explanatory variable and
denote the vector of values as X...

3. Taking the simulated effect coefficients from the top
portion of §, compute 6, = g(X,,B), where g(-,-) is
the systematic component of the statistical model.

4. Draw m values of the outcome variable Y*) (k =
1, ..., m) from the stochastic component f(0_,6).
This step simulates fundamental uncertainty.

5. Average over the fundamental uncertainty by calcu-
lating the the mean of the m simulations to yield one

simulated expected value E(Y,) = Zl=1 y® / m.

Note: It is m that approximates the fundamental variability but Step 5
averages it away. A large enough m will purge the simulated result of any
fundamental uncertainty.

Repeat the entire process M = 1000 times to estimate the full probability
distribution of E(Y.).



Calculating standard errors in Zelig

## Examples from titanic data
titanic <- read.dta("titanic.dta")
levels(titanic$class) <- c("first","second","third","crew")
z.out <- zelig(survived ~ aget+sex+class, model="logit", data=titanic)
summary (z.out)
x.kate <- setx(z.out, ageadults=1, sexman=1,

classsecond=0, classthird=0, classcrew=0)
x.kate[1,] <- ¢(1,1,0,0,0,0)
x.leo <- setx(z.out, ageadults=1, sexman=1,

classsecond=0, classthird=1, classcrew=0)
x.leo[1,] <- ¢(1,1,1,0,1,0)
summary (s.out <- sim(z.out, x=x.leo, x1=x.kate))



Calculating standard errors in Zelig

> summary(s.out <- sim(z.out, x=x.leo, xl=x.kate))

Values of X
(Intercept) ageadults sexman classsecond classthird classcrew
1 1 1 1 0 1 0

Values of X1
(Intercept) ageadults sexman classsecond classthird classcrew
1 1 1 0 0 0 0

Expected Values: E(Y[X)
mean sd 2.5% 97.5%
1 0.105 0.01205 0.08251 0.1290

Predicted Values: Y|X
0 1
1 0.888 0.112

First Differences in Expected Values: E(Y|X1)-E(YIX)
mean sd  2.5% 97.5%
1 0.7791 0.02423 0.7291 0.8227

Risk Ratios: P(Y=1|X1)/P(Y=1]X)
mean sd 2.5% 97.5%
1 8.538 1.062 6.723 10.89



More standard errors in Zelig

## economic_bills data

ecbills <- read.dta("economic_bills.dta")

z.out <- zelig(status ~ cabinet + vpdi_LH92economic + xland,

model="logit", data=ecbills)

x.out <- setx(z.out)

x.out[1,] <- ¢(1,0,0,0,0,1)

summary (sim(z.out, x.out))

# for comparison:

predict (log2,new=data.frame(cabinet=0,vpdi_LH92economic=0,xland="UK"),
type="response", se=T)

## economic_bills data gnédc

x.out[1,] <- ¢(1,1,5,1,0,0)

summary (sim(z.out, x.out))

# for comparison:

predict(log2,new=data.frame(cabinet=1,vpdi_LH92economic=5,xland="FRA"),
type="response",se=T)

## economic_bills data gn4d

(x.out <- setx(z.out, vpdi_LH92economic=seq(0,10.4,.1)))
x.out[,2] <- 0

x.out[,5] <- 1

s.out <- sim(z.out, x.out)

plot.ci(s.out)

lines(seq(0,10.4,.1), apply(s.out$qi$ev,2,mean))



Plot from Economic bills data
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Replicate Benoit and Marsh (PRQ, 2009) Figure 2

## replicate Figure 2 Benoit and Marsh (2009) PRQ
require(foreign)

## Loading required package: foreign

suppressPackageStartupMessages (require(Zelig))
dail <- read.dta("http://www.kenbenoit.net/files/dailprobit.dta", convert.facto
z.out <- zelig(wonseat ~ pspend_total*incumb+m, model="probit", data=dail, cite
Xx.incumb <- setx(z.out, pspend_total=seq(0,30,.5), incumb=1, m=4)
x.chall <- setx(z.out, pspend_total=seq(0,30,.5), incumb=0, m=4)
# x.chall[1,5] <- .0001
s.out <- sim(z.out, x=x.incumb, x1=x.chall)
plot.ci(s.out, xlab="}, Candidate Spending in Constituency",
ylab="Probability of Winning a Seat")
text(5,.7,"Incumbents", col="red")
text (17, .4,"Challengers", col="blue")
abline(h=.5, lty="dashed", col="grey60")

1.0




Replicate Benoit and Marsh (PRQ, 2009) Figure 2




Compare models fits using a Receiver Operating
Characteristic (ROC) plot

dail.incumb <- subset(dail, incumb==1, select=c(wonseat,pspend_total,incumb,m))
dail.chall <- subset(dail, incumb==0, select=c(wonseat,pspend_total,incumb,m))
z.out.i <- zelig(wonseat ~ pspend_total+m, model="probit", data=dail.incumb, ci
z.out.c <- zelig(wonseat ~ pspend_total+m, model="probit", data=dail.chall, cit
rocplot(z.out.i$y, z.out.c$y, fitted(z.out.i), fitted(z.out.c),

ltyl="solid", 1lty2="solid", col2="blue", coll="red")
text(.6,.55,"Incumbents",col="red")
text(.8,.85,"Challengers",col="blue")
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Replicate Benoit and Marsh (PRQ, 2009) Figure 2
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