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Class and homework last week

. mlogit valueposition us age higheduc highrelig usXhighrelig, base(1)
Multinomial logistic regression Number of obs = 1594

LR chi2(15) = 305.27
Prob > chi2 = 0.0000

Log likelihood = -1892.5991 Pseudo R2 = 0.0746

--------------------------------------------------------
valueposit~n | Coef. Std. Err. z P>|z|
-------------+------------------------------------------
sc_populism |

us | .961763 .2110147 4.56 0.000
age | -.0006348 .0043677 -0.15 0.884

higheduc | -.6378294 .1624709 -3.93 0.000
highrelig | .3030148 .2512754 1.21 0.228

usXhighrelig | 1.046964 .3177656 3.29 0.001
_cons | -1.409909 .2428747 -5.81 0.000

-------------+------------------------------------------
moral elit~m |

us | -.8423041 .210285 -4.01 0.000
age | .011921 .0040808 2.92 0.003

higheduc | .0111539 .1494356 0.07 0.941
highrelig | .2244204 .1820275 1.23 0.218

usXhighrelig | -.5558658 .3501997 -1.59 0.112
_cons | -1.184776 .2222915 -5.33 0.000

-------------+------------------------------------------
(valueposition==scientific elitism is the base outcome)
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. mlogit valueposition us age higheduc highrelig usXhighrelig, base(1)

--------------------------------------------------------
valueposit~n | Coef. Std. Err. z P>|z|
-------------+------------------------------------------
moral popu~m |

us | -.9441626 .279601 -3.38 0.001
age | -.0000473 .0046199 -0.01 0.992

higheduc | -.2209183 .1718877 -1.29 0.199
highrelig | .0151649 .2281207 0.07 0.947

usXhighrelig | 1.634334 .3713226 4.40 0.000
_cons | -1.068606 .2435958 -4.39 0.000

--------------------------------------------------------
(valueposition==scientific elitism is the base outcome)
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I If we denote by πSE the probability of Scientific Elitism, and
πSP, πME, and πMP the probabilities of the other three value
positions, the estimated model states that

L̂SP = log(π̂SP/π̂SE)

= −1.41 + 0.96U − 0.006A− 0.64E + 0.30R + 1.04(UR)

L̂ME = log(π̂ME/π̂SE)

= −1.18− 0.84U + 0.01A + 0.01E + 0.22R − 0.56(UR)

L̂MP = log(π̂MP/π̂SE)

= −1.07− 0.94U − 0.00005A− 0.22E + 0.02R + 1.63(UR)

where U denotes “US”, A “Age”, E “Higheduc” and R
“Highrelig”, and UR = U × R
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I For example, the coefficient of High education in the model
for log(πSP/πSE) is −0.638, and exp(−0.638) = 0.53.

I Thus the odds of selecting Scientific populism rather than
Scientific elitism are 47% lower (as 1− 0.53 = 0.47) for a
respondent with high level of education than for a respondent
with a low level of education, controlling for age, region and
religiosity.

I The 95% confidence interval for this odds ratio is (0.37; 0.73).
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I Fitted probabilities are useful as part of the interpretation of
the model:

π̂SE = 1/[1 + exp(L̂SP) + exp(L̂ME ) + exp(L̂MP)]

π̂SP = exp(L̂SP)/[1 + exp(L̂SP) + exp(L̂ME ) + exp(L̂MP)]

π̂ME = exp(L̂ME )/[1 + exp(L̂SP) + exp(L̂ME ) + exp(L̂MP)]

π̂MP = exp(L̂MP)/[1 + exp(L̂SP) + exp(L̂ME ) + exp(L̂MP)]

I These can be calculated at any values of the explanatory
variables you choose to use for illustration

I Examples of fitted probabilities are shown on the following
pages

I given age, for a person who lives in Europe, has a high level of
education and never attends religious services.

I given combinations of the three binary explanatory variables,
for a person aged 50
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Europe US
Education Religiosity Sci

elit.
Sci
pop.

Mor.
elit.

Mor.
pop.

Sci
elit.

Sci
pop.

Mor
elit.

Mor.
pop.

Low Low 0.47 0.11 0.26 0.16 0.50 0.31 0.12 0.07
High 0.42 0.14 0.29 0.15 0.23 0.56 0.04 0.16

High Low 0.51 0.06 0.29 0.14 0.60 0.20 0.14 0.06
High 0.47 0.08 0.33 0.13 0.33 0.42 0.06 0.19



When dependent variables are counts

I Many dependent variables of interest in political science may
be in the form of counts of discrete events– examples:

I international wars or conflict events
I presidential appointments to the US Supreme Court
I the number of coups d’état

I Characteristics: these Y are bounded between (0,∞) and
take on only discrete values 0, 1, 2, . . . ,∞

I Imagine a social system that produces events randomly during
a fixed period, and at the end of this period only the total
count is observed. For N periods, we have y1, y2, . . . , yN
observed counts

I As with the binary dependent variable case, we need to
transform both the error assumption (away from normality)
and the functional form (away from linearity)



Event count model basic assumptions
First principles:

1. The probability that two events occur at precisely the same
time is zero

2. During each period i , the event rate occurence λi remains
constant and is independent of all previous events during the
period

I note that this implies no contagion effects
I also known as Markov independence

3. Zero events are recorded at the start of the period

4. All observation intervals are equal over i

If these assumptions hold, we can model the counts as generated
by a Poisson distribution:

fPoisson(yi |λ) =

{
e−λλyi

yi !
∀ λ > 0 and yi = 0, 1, 2, . . .

0 otherwise



The Poisson distribution

fPoisson(yi |λ) =

{
e−λλyi

yi !
∀ λ > 0 and yi = 0, 1, 2, . . .

0 otherwise

Pr(Y |λ) =
n∏

i=1

e−λλyi

yi !

λ = eXiβ

E(yi ) = λ

Var(yi ) = λ



Systematic component

I λi > 0 is only bounded from below (unlike πi )

I This implies that the effect cannot be linear

I Hence for the functional form we will use an exponential
transformation

E(Yi ) = λi = eXiβ

I Other possibilities exist, but this is by far the most common –
indeed almost universally used – functional form for event
count models



Exponential link function
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Exponential link function



Likelihood for Poisson

L (λ|y) =
N∏
i=1

e−λiλyi
i

yi !

ln L (λ|y) =
N∑
i=1

ln

[
e−λiλyi

i

yi !

]

=
N∑
i=1

{
lne−λi + ln(λyi

i ) + ln

(
1

yi !

)}

=
N∑
i=1

{−λi + yi ln(λi )− ln(yi !)}

=
N∑
i=1

{
−eXiβ + yi lne

Xiβ − lnyi !
}

∝
N∑
i=1

{
−eXiβ + yiXiβ − dropped

}
lnL(β|y) ∝

N∑
i=1

{
Xiβyi − eXiβ

}



Predicted values from Benoit (1996)
> weede <- read.dta("weede.dta")

> z.out <- zelig(ssal6080 ~

+ fh73+lpopln70+lmilwp70, model="poisson", data=weede)

> (x.out <- setx(z.out, fh73=2:14))

(Intercept) fh73 lpopln70 lmilwp70

1 1 2 4.036 0.954

2 1 3 4.036 0.954

3 1 4 4.036 0.954

4 1 5 4.036 0.954

5 1 6 4.036 0.954

6 1 7 4.036 0.954

7 1 8 4.036 0.954

8 1 9 4.036 0.954

9 1 10 4.036 0.954

10 1 11 4.036 0.954

11 1 12 4.036 0.954

12 1 13 4.036 0.954

13 1 14 4.036 0.954

> s.out <- sim(z.out, x=x.out)

> summary(s.out)

Model: poisson

Number of simulations: 1000

Mean Values of X (n = 13)

(Intercept) fh73 lpopln70 lmilwp70

1.000 8.000 4.036 0.954

Pooled Expected Values: E(Y|X)

mean sd 2.5% 97.5%

0.3221 0.1085 0.1449 0.5697

Pooled Predicted Values: Y|X

mean sd 2.5% 97.5%

0.3259 0.5840 0.0000 2.0000



Replicate part of Table 3 from Benoit (1996)

> ## replicate part of Table 3 from Benoit (1996)

> z.tab2NBpoldem <- zelig(butterw ~ poldem65, model="negbin", data=weede)

> x.tab2NBpoldem <- setx(z.tab2NBpoldem, poldem65=c(0,20,55,85,100))

> s.tab2NBpoldem <- sim(z.tab2NBpoldem, x=x.tab2NBpoldem)

> cbind(apply(s.tab2NBpoldem$qi$ev, 2, mean),

+ apply(s.tab2NBpoldem$qi$ev, 2, sd))

[,1] [,2]

[1,] 1.7378 0.4969

[2,] 1.4819 0.3092

[3,] 1.1445 0.1644

[4,] 0.9364 0.1971

[5,] 0.8532 0.2290

> x.tab2NBfh73 <- setx(z.tab2NBfh73, fh73=c(2,4,7,12,14))

> s.tab2NBfh73 <- sim(z.tab2NBfh73, x=x.tab2NBfh73)

> cbind(apply(s.tab2NBfh73$qi$ev, 2, mean),

+ apply(s.tab2NBfh73$qi$ev, 2, sd))

[,1] [,2]

[1,] 1.4611 0.3421

[2,] 1.3210 0.2414

[3,] 1.1470 0.1709

[4,] 0.9308 0.2273

[5,] 0.8642 0.2674
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TABLE 3 

Fitted Values: Bivariate Negative Binomial Model 

Expected War Count Expected War Count 

POLDEM 1965 Butterworth Small-Singer Freedom House 1973 Butterworth Small-Singer 

0 1.84 0.79 2 1.55 0.66 

20 1.53 0.62 4 1.36 0.55 

55 1.10 0.42 7 1.12 0.42 

85 0.84 0.30 12 0.81 0.27 

100 0.73 0.25 14 0.71 0.23 

Mean SE (0.27) (0.14) (0.23) (0.11) 

substantial gain in precision of the coefficient estimates using the improved models, 
indicated by the standard errors. In both the Poisson and the negative binomial models, 
in fact, all coefficients on the democracy variables are statistically significant at the 

conventional .05 level for a one-sided test. That this should hold true for the Poisson 

indicates that the overdispersion may not be as serious a problem in these data as 

expected. The estimates of 2 are consistently around 2.5 for the Butterworth wars and 

around 1.5 for the Small-Singer wars. This indicates that the fundamental variability 
for the two war counts, or V(Yi), was roughly two-and-a-half and one-and-a-half times 

greater than E(Yi), respectively. 
Table 3 directly interprets the substantive meaning of the coefficient estimates by 

using fitted values. It indicates the expected number of wars for a nation at different 

levels of democracy. The least democratic countries, as measured by POLDEM, fought 
Butterworth wars at an average rate of more than two times greater than nations 

completely democratic. As measured by the Small-Singer wars, this rate was three to 

four times greater. Very similar rates are obtained by comparing the average war 

involvement at different levels of the Freedom House democracy scores, lending 
additional confidence to these results. Regardless of the measures of democracy or 

war involvement one uses, the analysis indicates that fully free countries fought 

approximately one fewer of each type of war than nonfree states. Regime type means 

an average difference of one war for individual countries, with even greater implica- 
tions for large groups of countries. This is a major repudiation of the previous 
consensus that democratic states are no less war prone than states with other regime 

types. The expectation of one less war over a 20-year period is both a substantively 
and statistically significant result. 

Interpreting the variance of the predictions from this model is also substantively 

interesting. With the differences among nations in the sample, the numerous idiosyn- 
crasies in factors leading to war involvement, and the fact that regime type is only one 

cause of war, we should expect substantial variation to underlie the average relation- 

ship predicted by the model. Figure 1 plots the negative binomial regression line, 

surrounded by the dashed line indicating one standard error, through the observations 

in each regression from Table 2. The total variance in expected rates of war involve- 

ment-taking account the fundamental variability represented by &2-_-is large rela- 



The Negative Binomial model

I Generalize the Poisson model to:

fnb(yi |λi , σ2) where :

I σ2 is the variability (a new parameter v. Poisson)
I λi is the expected number of events for i
I λ is the average of individual λi s

I Here we have dropped Poisson assumption that λi = λ ∀ i

I New assumption: Assume that λi is a random variable
following a gamma distribution (takes on only non-negative
numbers)

I For the NB model, Var(Yi ) = λiσ
2 for λi > 0 and σ2 > 0



The Negative Binomial model cont.

I For the NB model, Var(Yi ) = λiσ
2 for λi > 0 and σ2 > 0

I How to interpret σ2 in the negative binomial
I when σ2 = 1.0, negative binomial ≡ Poisson
I when σ2 > 1, then it means there is overdispersion in Yi

caused by correlated events, or heterogenous λi
I when σ2 < 1 it means something strange is going on

I When σ2 6= 1, then Poisson results will be inefficient and
standard errors inconsistent

I Functional form: same as Poisson

E(yi ) = λ

I Variance of λ is now:

Var(yi ) = λiσ
2 = eXiβσ2



Poisson and negative binomial example

[switch to Stata for example here]



Negative binomial likelihood


