Models for count data: Poisson and negative binomial

ME104: Linear Regression Analysis - Kenneth Benoit

August 23, 2012

. mlogit valueposition us age higheduc highrelig usXhighrelig, base(1) Multinomial logistic regression Number of obs = 1594 LR chi2(15) = 305.27 Prob > chi2 = 0.0000 Log likelihood = -1892.5991 Pseudo R2 = 0.0746valueposit~n | Coef. Std. Err. z P>|z| sc_populism | us | .961763 .2110147 4.56 0.000 age | -.0006348 .0043677 -0.15 0.884 higheduc | -.6378294 .1624709 -3.93 0.000 highrelig | .3030148 .2512754 1.21 0.228 usXhighrelig | 1.046964 .3177656 3.29 0.001 -1.409909 .2428747 -5.81 0.000 _cons | moral elit~m | us | -.8423041 .210285 -4.01 0.000 age | .011921 .0040808 2.92 0.003 higheduc | .0111539 .1494356 0.07 0.941 highrelig | .2244204 .1820275 1.23 0.218 usXhighrelig | -.5558658 .3501997 -1.59 0.112 _cons | -1.184776 .2222915 -5.33 0.000

(valueposition==scientific elitism is the base outcome)

. mlogit valueposition us age higheduc highrelig usXhighrelig, base(1)

valueposit~n	Coef.	Std. Err.	z	P> z				
moral popu~m	 							
us	9441626	.279601	-3.38	0.001				
age	0000473	.0046199	-0.01	0.992				
higheduc	2209183	.1718877	-1.29	0.199				
highrelig	.0151649	.2281207	0.07	0.947				
usXhighrelig	1.634334	.3713226	4.40	0.000				
_cons	-1.068606	.2435958	-4.39	0.000				
· · · · · ·								
(valueposition==scientific elitism is the base outcome)								

• If we denote by π_{SE} the probability of Scientific Elitism, and π_{SP} , π_{ME} , and π_{MP} the probabilities of the other three value positions, the estimated model states that

$$\begin{split} \hat{L}_{\text{SP}} &= \log(\hat{\pi}_{\text{SP}}/\hat{\pi}_{\text{SE}}) \\ &= -1.41 + 0.96U - 0.006A - 0.64E + 0.30R + 1.04(UR) \\ \hat{L}_{\text{ME}} &= \log(\hat{\pi}_{\text{ME}}/\hat{\pi}_{\text{SE}}) \\ &= -1.18 - 0.84U + 0.01A + 0.01E + 0.22R - 0.56(UR) \\ \hat{L}_{\text{MP}} &= \log(\hat{\pi}_{\text{MP}}/\hat{\pi}_{\text{SE}}) \\ &= -1.07 - 0.94U - 0.00005A - 0.22E + 0.02R + 1.63(UR) \end{split}$$

where U denotes "US", A "Age", E "Higheduc" and R "Highrelig", and $UR = U \times R$

- For example, the coefficient of High education in the model for log(π_{SP}/π_{SE}) is −0.638, and exp(−0.638) = 0.53.
- ► Thus the odds of selecting Scientific populism rather than Scientific elitism are 47% lower (as 1 - 0.53 = 0.47) for a respondent with high level of education than for a respondent with a low level of education, controlling for age, region and religiosity.
- ▶ The 95% confidence interval for this odds ratio is (0.37; 0.73).

Fitted probabilities are useful as part of the interpretation of the model:

$$\begin{aligned} \hat{\pi}_{SE} &= 1/[1 + \exp(\hat{L}_{SP}) + \exp(\hat{L}_{ME}) + \exp(\hat{L}_{MP})] \\ \hat{\pi}_{SP} &= \exp(\hat{L}_{SP})/[1 + \exp(\hat{L}_{SP}) + \exp(\hat{L}_{ME}) + \exp(\hat{L}_{MP})] \\ \hat{\pi}_{ME} &= \exp(\hat{L}_{ME})/[1 + \exp(\hat{L}_{SP}) + \exp(\hat{L}_{ME}) + \exp(\hat{L}_{MP})] \\ \hat{\pi}_{MP} &= \exp(\hat{L}_{MP})/[1 + \exp(\hat{L}_{SP}) + \exp(\hat{L}_{ME}) + \exp(\hat{L}_{MP})] \end{aligned}$$

- These can be calculated at any values of the explanatory variables you choose to use for illustration
- Examples of fitted probabilities are shown on the following pages
 - given age, for a person who lives in Europe, has a high level of education and never attends religious services.
 - given combinations of the three binary explanatory variables, for a person aged 50

		Europe				US			
Education	Religiosity	Sci	Sci	Mor.	Mor.	Sci	Sci	Mor	Mor.
		elit.	pop.	elit.	рор.	elit.	рор.	elit.	рор.
Low	Low	0.47	0.11	0.26	0.16	0.50	0.31	0.12	0.07
	High	0.42	0.14	0.29	0.15	0.23	0.56	0.04	0.16
High	Low	0.51	0.06	0.29	0.14	0.60	0.20	0.14	0.06
	High	0.47	0.08	0.33	0.13	0.33	0.42	0.06	0.19

When dependent variables are counts

- Many dependent variables of interest in political science may be in the form of counts of discrete events- examples:
 - international wars or conflict events
 - presidential appointments to the US Supreme Court
 - the number of coups d'état
- ► Characteristics: these Y are bounded between (0,∞) and take on only discrete values 0, 1, 2, ..., ∞
- ► Imagine a social system that produces events randomly during a fixed period, and at the end of this period only the total count is observed. For N periods, we have y₁, y₂,..., y_N observed counts
- As with the binary dependent variable case, we need to transform both the error assumption (away from normality) and the functional form (away from linearity)

Event count model basic assumptions

First principles:

- 1. The probability that two events occur at precisely the same time is zero
- 2. During each period *i*, the event rate occurence λ_i remains constant and is independent of all previous events during the period
 - note that this implies no contagion effects
 - > also known as *Markov independence*
- 3. Zero events are recorded at the start of the period
- 4. All observation intervals are equal over i

If these assumptions hold, we can model the counts as generated by a Poisson distribution:

$$f_{Poisson}(y_i|\lambda) = \begin{cases} rac{e^{-\lambda_\lambda y_i}}{y_i!} & orall \lambda > 0 ext{ and } y_i = 0, 1, 2, \dots \\ 0 & ext{otherwise} \end{cases}$$

The Poisson distribution

$$f_{Poisson}(y_i|\lambda) = \begin{cases} \frac{e^{-\lambda}\lambda^{y_i}}{y_i!} & \forall \ \lambda > 0 \text{ and } y_i = 0, 1, 2, \dots \\ 0 & \text{otherwise} \end{cases}$$

$$Pr(Y|\lambda) = \prod_{i=1}^{n} \frac{e^{-\lambda}\lambda^{y_i}}{y_i!}$$

$$\lambda = e^{X_i\beta}$$

$$E(y_i) = \lambda$$

$$Var(y_i) = \lambda$$

Systematic component

- $\lambda_i > 0$ is only bounded from below (unlike π_i)
- This implies that the effect cannot be linear
- Hence for the functional form we will use an exponential transformation

$$\mathsf{E}(Y_i) = \lambda_i = e^{X_i\beta}$$

 Other possibilities exist, but this is by far the most common – indeed almost universally used – functional form for event count models

Exponential link function

Х

Exponential link function

Likelihood for Poisson

$$L(\lambda|y) = \prod_{i=1}^{N} \frac{e^{-\lambda_{i}} \lambda_{i}^{y_{i}}}{y_{i}!}$$

$$\ln L(\lambda|y) = \sum_{i=1}^{N} \ln \left[\frac{e^{-\lambda_{i}} \lambda_{i}^{y_{i}}}{y_{i}!}\right]$$

$$= \sum_{i=1}^{N} \left\{\ln e^{-\lambda_{i}} + \ln(\lambda_{i}^{y_{i}}) + \ln\left(\frac{1}{y_{i}!}\right)\right\}$$

$$= \sum_{i=1}^{N} \left\{-\lambda_{i} + y_{i}\ln(\lambda_{i}) - \ln(y_{i}!)\right\}$$

$$= \sum_{i=1}^{N} \left\{-e^{X_{i}\beta} + y_{i}\ln e^{X_{i}\beta} - \ln y_{i}!\right\}$$

$$\propto \sum_{i=1}^{N} \left\{-e^{X_{i}\beta} + y_{i}X_{i}\beta - dropped\right\}$$

$$\ln L(\beta|y) \propto \sum_{i=1}^{N} \left\{X_{i}\beta y_{i} - e^{X_{i}\beta}\right\}$$

Predicted values from Benoit (1996)

```
> weede <- read.dta("weede.dta")</pre>
> z.out <- zelig(ssal6080 ~
                fh73+lpopln70+lmilwp70, model="poisson", data=weede)
> (x.out <- setx(z.out, fh73=2:14))
   (Intercept) fh73 lpopln70 lmilwp70
1
             1
                 2
                      4.036
                               0.954
2
                 3
                      4.036
                             0.954
             1
з
             1
                 4
                    4.036 0.954
4
             1
                 5
                    4.036 0.954
5
                 6
                    4.036 0.954
             1
6
                 7
                     4.036 0.954
             1
7
             1
                 8
                     4.036 0.954
8
            1
                 9
                     4.036 0.954
9
                    4.036 0.954
            1
              10
            1
               11
                     4.036 0.954
10
11
            1
               12
                     4.036 0.954
12
                13
                     4.036 0.954
            1
13
             1
                14
                      4.036
                               0.954
> s.out <- sim(z.out, x=x.out)</pre>
> summary(s.out)
 Model: poisson
 Number of simulations: 1000
Mean Values of X (n = 13)
(Intercept)
                  fh73
                          lpopln70
                                      lmilwp70
      1.000
                 8,000
                             4.036
                                         0.954
Pooled Expected Values: E(Y|X)
               2.5% 97.5%
          sd
 mean
0.3221 0.1085 0.1449 0.5697
Pooled Predicted Values: Y X
          sd
               2.5% 97.5%
 mean
0 3259 0 5840 0 0000 2 0000
```

Replicate part of Table 3 from Benoit (1996)

```
> ## replicate part of Table 3 from Benoit (1996)
> z.tab2NBpoldem <- zelig(butterw ~ poldem65, model="negbin", data=weede)</pre>
> x.tab2NBpoldem <- setx(z.tab2NBpoldem, poldem65=c(0,20,55,85,100))</pre>
> s.tab2NBpoldem <- sim(z.tab2NBpoldem, x=x.tab2NBpoldem)</pre>
> cbind(applv(s.tab2NBpoldem$gi$ev. 2, mean).
         apply(s.tab2NBpoldem$qi$ev, 2, sd))
       [,1]
              [,2]
[1.] 1.7378 0.4969
[2,] 1,4819 0,3092
[3,] 1,1445 0,1644
[4.] 0.9364 0.1971
[5,] 0.8532 0.2290
> x.tab2NBfh73 <- setx(z.tab2NBfh73, fh73=c(2,4,7,12,14))</pre>
> s.tab2NBfh73 <- sim(z.tab2NBfh73, x=x.tab2NBfh73)</pre>
> cbind(applv(s.tab2NBfh73$gi$ev. 2, mean),
         apply(s.tab2NBfh73$qi$ev, 2, sd))
+
       [,1]
             [,2]
[1.] 1.4611 0.3421
                                                                  TABLE 3
[2,] 1.3210 0.2414
                                              Fitted Values: Bivariate Negative Binomial Model
[3,] 1.1470 0.1709
[4,] 0,9308 0,2273
                                                 Expected War Count
                                                                                 Expected War Count
[5,] 0.8642 0.2674
                               POLDEM 1965
                                             Butterworth Small-Singer
                                                                      Freedom House 1973 Butterworth Small-Singer
                              0
                                                 1.84
                                                           0.79
                                                                            2
                                                                                          1.55
                              20
                                                 1 53
                                                           0.62
                                                                            4
                                                                                          1 36
                              55
                                                                            7
                                                 1.10
                                                           0.42
                                                                                          1.12
                              85
                                                                           12
                                                0.84
                                                           0.30
                                                                                          0.81
                               100
                                                0.73
                                                           0.25
                                                                           14
                                                                                          0.71
                              Mean SE
                                                (0.27)
                                                          (0.14)
                                                                                         (0.23)
```

0.66

0.55

0.42

0.27

0.23

(0.11)

The Negative Binomial model

Generalize the Poisson model to:

 $f_{nb}(y_i|\lambda_i,\sigma^2)$ where :

- σ^2 is the variability (a new parameter v. Poisson)
- λ_i is the expected number of events for *i*
- λ is the average of individual λ_i s
- Here we have dropped Poisson assumption that $\lambda_i = \lambda \ \forall \ i$
- New assumption: Assume that λ_i is a random variable following a *gamma* distribution (takes on only non-negative numbers)
- For the NB model, $Var(Y_i) = \lambda_i \sigma^2$ for $\lambda_i > 0$ and $\sigma^2 > 0$

The Negative Binomial model cont.

- For the NB model, $Var(Y_i) = \lambda_i \sigma^2$ for $\lambda_i > 0$ and $\sigma^2 > 0$
- How to interpret σ^2 in the negative binomial
 - when $\sigma^2 = 1.0$, negative binomial \equiv Poisson
 - when σ² > 1, then it means there is overdispersion in Y_i caused by correlated events, or heterogenous λ_i
 - when $\sigma^2 < 1$ it means something strange is going on
- ▶ When $\sigma^2 \neq 1$, then Poisson results will be inefficient and standard errors inconsistent
- Functional form: same as Poisson

$$\mathsf{E}(y_i) = \lambda$$

• Variance of λ is now:

$$\operatorname{Var}(y_i) = \lambda_i \sigma^2 = e^{X_i \beta} \sigma^2$$

Poisson and negative binomial example

[switch to Stata for example here]

Negative binomial likelihood

$$f_{bb}(y; \left(\lambda_{i}, \sigma^{2}\right) = \frac{\Gamma\left(\frac{\lambda_{i}}{\sigma^{2}-1} + y_{i}\right)}{y; \Gamma\left(\frac{\lambda_{i}}{\sigma^{2}-1}\right)} \left(\frac{\sigma^{2}-1}{\sigma^{2}}\right)^{y;} \sigma^{2} \frac{-\lambda_{i}}{\sigma^{2}-1}$$

$$E(Y_{i}) = \lambda_{i} = e^{X_{i}\beta}$$

$$V(Y_{i}) = \lambda_{i}\sigma^{2} = e^{X_{i}\beta} \frac{\partial}{\partial^{2}}$$
as $\sigma^{2} \rightarrow 1$, appreximate Paisson
$$\ln L(\beta, \sigma^{2} | Y_{i}) = \sum_{i=1}^{n} \left\{ \ln \Gamma\left(\frac{\lambda_{i}}{\sigma^{2}-i} + Y_{i}\right) - \ln \Gamma\left(\frac{\lambda_{i}}{\sigma^{2}-i}\right) + y_{i} \ln (\sigma^{2}-i) - \ln(\sigma^{2})\left(y_{i} + \frac{\lambda_{i}}{\sigma^{2}-i}\right) \right\}$$