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Class and homework last week

. mlogit valueposition us age higheduc highrelig usXhighrelig, base(1)

Multinomial logistic regression Number of obs = 1594
LR chi2(15) = 305.27
Prob > chi2 = 0.0000
Log likelihood = -1892.5991 Pseudo R2 = 0.0746
valueposit™n | Coef.  Std. Err. z P>|z|
sc_populism |
us | .961763 .2110147 4.56  0.000
age | -.0006348 .0043677 -0.156 0.884
higheduc | -.6378294 .1624709 -3.93 0.000
highrelig | .3030148 .2512754 1.21 0.228
usXhighrelig | 1.046964 .3177656 3.29 0.001
_cons | -1.409909 . 2428747 -5.81  0.000
moral elit™m |
us | -.8423041 .210285 -4.01 0.000
age | .011921 .0040808 2.92 0.003
higheduc | .0111539 .1494356 0.07 0.941
highrelig | .2244204 .1820275 1.23 0.218
usXhighrelig | -.5558658 .3501997 -1.59 0.112
_cons | -1.184776 .2222915 -5.33 0.000

(valueposition==scientific elitism is the base outcome)



Class and homework last week

. mlogit valueposition us age higheduc highrelig usXhighrelig, base(1)

valueposit™n | Coef. Std. Err. z P>|z|
moral popu™m |

us | -.9441626 .279601 -3.38 0.001

age | -.0000473 .0046199 -0.01 0.992

higheduc | -.2209183 .1718877 -1.29 0.199

highrelig | .0151649 .2281207 0.07  0.947

usXhighrelig | 1.634334 .3713226 4.40 0.000

_cons | -1.068606 .2435958 -4.39 0.000

(valueposition==scientific elitism is the base outcome)



Class and homework last week

> If we denote by msg the probability of Scientific Elitism, and
wsp, ™ME, and myp the probabilities of the other three value
positions, the estimated model states that

Lsp = log(#tsp/7sE)

= —1.41+0.96U — 0.006A — 0.64E + 0.30R + 1.04(UR)
Ive = log(fme/#sE)

— _1.18 — 0.84U + 0.01A + 0.01E + 0.22R — 0.56(UR)
Iup = log(#mp/#sE)

= —1.07 —0.94U — 0.00005A — 0.22E + 0.02R + 1.63(UR)

where U denotes "US", A "Age’, E “Higheduc” and R
“Highrelig”, and UR = U x R



Class and homework last week

» For example, the coefficient of High education in the model
for log(msp/msg) is —0.638, and exp(—0.638) = 0.53.

» Thus the odds of selecting Scientific populism rather than
Scientific elitism are 47% lower (as 1 — 0.53 = 0.47) for a
respondent with high level of education than for a respondent
with a low level of education, controlling for age, region and
religiosity.

» The 95% confidence interval for this odds ratio is (0.37; 0.73).



Class and homework last week

» Fitted probabilities are useful as part of the interpretation of

the model:

#se = 1/[1+exp(Lsp) + exp(Lme) + exp(Lyp)]

fisp = exp(Lsp)/[1 + exp(Lsp) + exp(Lme) + exp(Luvp)]
ame = exp(Lye)/[1+ exp(Lsp) + exp(Lme) + exp(Lmp)]
fmp = exp(Lmp)/[1 + exp(Lsp) + exp(Lume) + exp(Lump)]

» These can be calculated at any values of the explanatory
variables you choose to use for illustration
» Examples of fitted probabilities are shown on the following
pages
> given age, for a person who lives in Europe, has a high level of
education and never attends religious services.
» given combinations of the three binary explanatory variables,
for a person aged 50



Class and homework last week

Fitted probability of value position
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Class and homework last week

Europe us
Education | Religiosity | Sci | Sci Mor. | Mor. | Sci | Sci Mor | Mor.
elit. | pop. | elit. pop. | elit. | pop. | elit. | pop.
Low Low 047 011]| 0.26| 0.16 | 0.50| 0.31| 0.12| 0.07
High 042| 014 | 029 | 0.15|0.23| 0.56 | 0.04 | 0.16
High Low 0.51] 0.06| 029 | 0.14 )| 0.60| 0.20 | 0.14 | 0.06
High 047 | 0.08] 0.33] 0.13|0.33]| 042 | 0.06| 0.19




When dependent variables are counts

v

Many dependent variables of interest in political science may
be in the form of counts of discrete events— examples:

> international wars or conflict events

» presidential appointments to the US Supreme Court

» the number of coups d’état
Characteristics: these Y are bounded between (0, c0) and
take on only discrete values 0,1,2,..., 00

Imagine a social system that produces events randomly during
a fixed period, and at the end of this period only the total
count is observed. For N periods, we have y1,y2,..., ¥n
observed counts

As with the binary dependent variable case, we need to
transform both the error assumption (away from normality)
and the functional form (away from linearity)



Event count model basic assumptions
First principles:
1. The probability that two events occur at precisely the same
time is zero

2. During each period i/, the event rate occurence \; remains
constant and is independent of all previous events during the
period

» note that this implies no contagion effects
» also known as Markov independence

3. Zero events are recorded at the start of the period

4. All observation intervals are equal over i

If these assumptions hold, we can model the counts as generated
by a Poisson distribution:

e~ A\ \i
VA>0andy; =0,1,2,...
fPoisson(yf‘A) - { 0 v otherwise ’



The Poisson distribution

{ eV A>0andy =0,1,2,...

fPoisson(yiP‘) = OylI otherwise
n e M )\i
Py = [
-1 I



Systematic component

» \;j > 0 is only bounded from below (unlike 7;)
» This implies that the effect cannot be linear

» Hence for the functional form we will use an exponential
transformation
E(Y;) =\ = ™7
» Other possibilities exist, but this is by far the most common —
indeed almost universally used — functional form for event
count models



Exponential link function

exp(XB)

12
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b1=2, b2=-5

b1=-1, b2=.1




Exponential link function
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Likelihood for Poisson
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Predicted values from Benoit (1996)

> weede <- read.dta("weede.dta")
> z.out <- zelig(ssal6080 ~
+ fh73+1popln70+Ilmilwp70, model="poisson", data=weede)
> (x.out <- setx(z.out, fh73=2:14))
(Intercept) fh73 lpopln70 1lmilwp70

1 1 2 4.036 0.954
2 1 3 4.036 0.954
3 1 4 4.036 0.954
4 1 5 4.036 0.954
5 1 6 4.036 0.954
6 1 7 4.036 0.954
7 1 8 4.036 0.954
8 1 9 4.036 0.954
9 1 10 4.036 0.954
10 1 11 4.036 0.954
11 1 12 4.036 0.954
12 1 13 4.036 0.954
13 1 14 4.036 0.954
> s.out <- sim(z.out, x=x.out)
> summary(s.out)
Model: poisson
Number of simulations: 1000
Mean Values of X (n = 13)
(Intercept) fh73 1popln70 1milwp70
1.000 8.000 4.036 0.954

Pooled Expected Values: E(Y|X)
mean sd  2.5% 97.5%
0.3221 0.1085 0.1449 0.5697

Pooled Predicted Values: Y|X
mean sd  2.5% 97.5%
A 2VEQ O ERQAO0 O O0AR O 00O



Replicate part of Table 3 from Benoit (1996)

## replicate part of Table 3 from Benoit (1996)
z.tab2NBpoldem <- zelig(butterw ~ poldem65, model="negbin", data=weede)
x.tab2NBpoldem <- setx(z.tab2NBpoldem, poldem65=c(0,20,55,85,100))
s.tab2NBpoldem <- sim(z.tab2NBpoldem, x=x.tab2NBpoldem)
cbind (apply (s.tab2NBpoldem$qi$ev, 2, mean),

apply(s.tab2NBpoldem$qi$ev, 2, sd))

[,1] [,21
[1,] 1.7378 0.4969
[2,] 1.4819 0.3092
[3,] 1.1445 0.1644
[4,1 0. 0.
[5,] 0.8532 0.2290
> x.tab2NBfh73 <- setx(z.tab2NBfh73, fh73=c(2,4,7,12,14))
> s.tab2NBfh73 <- sim(z.tab2NBfh73, x=x.tab2NBfh73)
> cbind(apply(s.tab2NBfh73$qi$ev, 2, mean),

+VVVVYyV

+ apply(s.tab2NBfh73$qif$ev, 2, sd))
[,1] [,2]

[1,] 1.4611 0.3421 TABLE 3

[2,] 1.3210 0.2414 Fitted Values: Bivariate Negative Binomial Model

[3,] 1.1470 0.1709

[4,] 0.9308 0.2273 Expected War Count Expected War Count

[5,1 0.8642 0.2674 POLDEM 1965  Butterworth Small-Singer Freedom House 1973  Butterworth  Small-Singer
0 1.84 0.79 2 1.55 0.66
20 1.53 0.62 4 136 0.55
55 110 0.42 7 1.12 0.42
85 0.84 0.30 12 0.81 0.27
100 0.73 0.25 14 0.71 0.23

Mean SE (0.27) (0.14) (0.23) (0.11)




The Negative Binomial model

Generalize the Poisson model to:

v

fun(vilAi, 0%) where :

» 02 is the variability (a new parameter v. Poisson)
> )\, is the expected number of events for i
> ) is the average of individual A;s

v

Here we have dropped Poisson assumption that A\; = AV i

» New assumption: Assume that \; is a random variable
following a gamma distribution (takes on only non-negative
numbers)

For the NB model, Var(Y;) = \jo? for A\; > 0 and 02 > 0

v



The Negative Binomial model cont.

v

For the NB model, Var(Y;) = ;o2 for A\; > 0 and 02 > 0
How to interpret o2 in the negative binomial
» when o2 = 1.0, negative binomial = Poisson
» when o2 > 1, then it means there is overdispersion in Y;
caused by correlated events, or heterogenous A;
» when o2 < 1 it means something strange is going on

v

v

When o2 # 1, then Poisson results will be inefficient and
standard errors inconsistent

Functional form: same as Poisson

E(yi) = A

v

Variance of \ is now:

v

Var(y;) = \jo? = eXiP 52



Poisson and negative binomial example

[switch to Stata for example here]



Negative binomial likelihood
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