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Regression diagnostics in Stata

I Following regress, there are regress postestimation
quantities that can be generated directly using predict:

, xb generates ŷi
, residuals generates ei
, rstudent generates studentized residual for i
, cooksd generates Cook’s distance for i

, leverage generates leverage of obsveration i

I And several diagnostic plots

rvfplot

rvpplot ¡varname¿
lvr2plot



Studentized and standardized residuals

I Define hi as the diagonal Hii from the hat matrix. These are also
known as the leverage of each observation, and is computed as:

hi = xi (X ′X )−1x ′j

I The standardized residual is then:

êi =
ei

s
√

1− hi

I The studentized residual is the root mean squared error of the
refression with the ith observation removed:

ri =
ei

s(i)
√

1− hi

I Both standardized and studentized residuals are attempts to adjust
residuals by their standard errors, where the Var(ei ) = σ2(1− hi )

I Note that the calculated ei = Yi − Ŷi all have the same variance
(the homoskedasticity assumption), but the calculated ei do not



Cook’s Distance plot
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I Cook’s Distance is a measure of influence

plot(lm(votes1st~spend total*incumb, data=dail), which=4)



Cook’s Distance

I Cook’s distance for observation i measures the effect of
deleting that observation

I Defined as:

Di =

∑n
j=1(ŷj − ŷj(i))

2

pσ̂

=
e2i
pσ̂

[
hii

(1− hii )2

]
I Guideline: points for which Di > 1.0 usually need closer

examination

I Closely connected to leverage, which is hii or the diagonal of
the hat matrix H

hii =
1

n
+

(xi − x̄)2

sxx

I In R, hii <- influence()$hat



Residuals v. leverage
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I Leverage is defined as hii for the ith observation

plot(lm(votes1st~spend total*incumb, data=dail), which=5)



Cook’s Distance v. leverage
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plot(lm(votes1st~spend total*incumb, data=dail), which=6)



What to do with Outliers?

1. Ignore the problem!

2. Investigate why the data are outliers — what makes them
unusual?

3. Consider respecifying the model, either by tranforming a
variable or by including an additional variable (but beware of
overfitting)

4. Consider a variant of “robust regression” that downweights
outliers

5. Note: Fox contains a number of good rules of thumb for
detecting what constitutes an “outlier” based on thresholds
applied to diagnostic statistics (but best method is usually
graphical)



Robust regression methods

I Robust regression methods are methods to find central tendencies
without giving undue influence to outliers

I For simple case like X̄ , assume we have extreme values

I Simple solution: Trim off extreme values, such as the outer deciles:
X̄.10 is the mean of X value with outer 10% trimmed away

I Or: use X̄b as “biweighted” mean, gradually weighting observations

w = (1− z2)2 if |z | ≤ 1

= 0 if |z | > 1

where z =
X −median(X )

3(IQR)

and X̄b =

∑n
i=1 wiXi∑n
i=1 wi

I The “bi-weighted iterative” mean takes this a step further:

z =
X − X̄b

3(IQR)
(1)



Biweighted least squares

ei = Yi − Ŷi

zi =
Yi − Ŷi

3s
w = (1− z2)2 if |z | ≤ 1

= 0 if |z | > 1

b =

∑
wXY∑
wX 2

a = Ȳ − bX̄

1. Start with OLS (same as all wi = 1)

2. Measure Yi − Ŷi — this determines the weights wi

3. Fit the new line and repeat steps 2–3 until improvement stops

In R, this is rlm() from the MASS library



Changes of scale

I In short: Linear rescaling of variables will not change the
essential key statistics for inference, just their scale

I Suppose we reexpress xi as (xi + a)/b. Then:
I t, F , σ̂2, R2 unchanged
I β̂i → bβ̂i

I Suppose we rescale yi as (yi + a)/b. Then:
I t, F , R2 unchanged
I σ̂2 and β̂i will be rescaled by b

I Standardized variables and standardized coefficients: where
we replace the variables (all x and y) by their standardized
values (xi − X̄ )/SDx (e.g. for x). Standardized coefficients
are sometimes called “betas”.



More on standardized coefficients

Consider a standardized coefficient b∗ on a single variable x .

I Formula: b∗ = b SDx
SDy

I Intrepretation: the increase in standard deviations of y
associated with a one standard deviation increase in x

I where standardization means transforming into variables z
such that zi = (xi − X̄ )/SDx

I Motivation: “standardizes” units so we can compare the
magnitude of different variables’ effects

I In practice: serious people never use these and you should not
either

I too tricky to interpret
I misleading since suggests we can compare apples and oranges
I too dependent on sample variation (just another version of R2)



Collinearity

I When some variables are exact linear combinations of others
then we have exact collinearity, and there is no unque least
squares estimate of β

I When X variables are correlated, then we have
(multi)collinearity

I Detecting (multi)collinearity:
I look at correlation matrix of predictors for pairwise correlations
I regress xk on all other predictors to produce R2

k , and look for
high values (close to 1.0)

I Examine eigenvalues of X ′X



Collinearity continued

I Define:
Sxjxj =

∑
i

(xij − x̄j)
2

then

Var(β̂j) = σ2

(
1

1− R2
j

)
1

Sxjxj

I So collinearity’s main consequence is to reduce the efficiency
of our estimates of β

I So if xj does not vary much, then Var(β̂j) will be large – and
we can maximize Sxjxj by spreading X as much as possible

I We call this factor 1
1−R2

j
a variance inflaction factor (the

faraway package for R has a function called vif() you can
use to compute it)

I Orthogonality means that variance is minimized when R2
j = 0



Non-zero expected error problems

I Constant non-zero mean
I Happens when there are systematically positive or negative

errors of measurement in the dependent variable
I Consequence: the OLS estiimte of the intercept will be biased

I Zero intercept
I No bias from including an unnecessary intercept, even when

theory suggests it should be zero
I Not including an intercept is equivalent to the linear constraint

that β0 = 0

I Non-constant error variances, aka heteroskedasticity
I Limited dependent variable

I In this special case, OLS will be biased for all coefficients
I We will deal with this more in Week 6, since it requires

non-OLS solutions



“Non-spherical” error

I Means that the variance of the residuals is not uniform, OR

I Means that the residuals may be correlated

I Consequences
I Efficiency loss
I Inconsistency: can no longer trust βOLS

I βOLS is no longer the maximum likelihood estimator



Heteroskedasticity

I Graphical inspection of residuals is best check

I Some tests also exist: Breusch-Pagan test, Goldfeld-Quandt
test (see the lmtest library, it contains all of these)

I One solution is to use generalized least squares (GLS)

I A fix: White’s heteroskedasticity-corrected standard errors:

Var(b) = (X ′X )−1X ′diag(e2)X (X ′X )−1

I Can implement these very easily using the vce(robust)

option to a regress command



Autocorrelated disturbances

I Spatial autocorrelation: Caused when a shock in one period
affects shocks in a subsequent period



Autocorrelated disturbances

I In time-series data, shocks often have effects that persist for
more than one period

I Can test for this using the Durbin-Watson test, which tests
thee first order autocorrelation coefficient ρ

I 0 < d < 4
I d = 2 when ρ = 0; if d < 1.0 then need correction
I use estat dwatson (but the data must be tsset <timevar>

first using a time variable

I Not all time-series models are complex, but this is an
advanced topic with many forms of different models



Simultaneous Equations: The Problem

I Assume we have the following model:
I E = evaluations of parties
I P = party identification
I V = vote to be explained
I E = q1P + U1 (1)
I V = q2P + q3E + U2 (2)

I Path model:



Simultaneous Equations: The Problem

I Question: What is the total effect of party ID on voting
behaviour? includes:

I the direct effect q2, plus
I the indirect effect q1q3

I “Path analysis”: uses correlations instead of covariances, so
that all estimated relationships are standardized coefficients

I Substitute (1) into (2):

V = q2P + q3(q1P + U1) + U2

= q2P + q3q1P + q3U1 + U2

= (q2 + q3q1)P + q3U1 + U2

= πiP + ν



General Multiequation Model

I where Ym are endogenous variables, Xk are exogenous variables

I Hierarchical equations are structured so that higher ordered
endogenous variables do not appear as explanatory variables in lower
ordered equations

I Structural equations since they represent underlying systematic and
stochastic processes which led to the observed data

I To access the total effect on the endogenous variables of a change
in X , we must include all indirect effects through γ and β

I We do this through the reduced form equations



Example

Consider the following hierarchical model, where the error terms
are correlated:



Example cont.

The reduced form expressions for each endogenous variable are:



Using reduced form equations to gauge total effect

Question: What is the total effect on Y3 of a change in X2?
β23 direct effect

γ23β22 indirect effect from direct change in Y2

γ13β21 indirect effect from a direct change in Y1

+ γ23γ12β21 indirect effect due to changes in Y2 caused by changes in Y1

= π23 total effect



Why are structural equations needed?

I If exogenous variables are independent of error terms, then we
can use OLS to estimate unbiased and consistent estimates of
reduced form parameters. But estimates of the structural
parameters will be biased and inconsistent. So?

I Generally in political science we are concerned with underlying
causal relationships — in other words, the structural
parameters — to test competing theories. Example: electoral
model

I Multiequation moels that are hierarchical and have
independent error terms across equations are called recursive
systems

I for recursive systems, we can use OLS
I for non-recursive systems, OLS causes bias and inconsistency

I Key question: are the error terms independent?



The independence of error terms

I This is the key question
I Is the uncorrelated error term assumption reasonable?

I Errors may be the result of omitted small influences that could
be similar across equations

I If some explanatory factor is excluded from more than one
equation, this will cause correlated errors

I If some X has measurement error, this can also cause errors
that correlate across equations

I The Hausman test (or Durbin-Wu-Hausman test—see
Kennedy) can be used to test the assumption of endogeneity

I regress the the endogenous variable on the instruments
(typically, all exogenous variables)

I then regress the main dependent variable on the exogenous
variables plus the residuals from step 1

I the t-test on the residual coefficient is the test for endogeneity



Solution 1: Indirect Least Squares

I We directly estimate β11, β21, β31 from the regression on Y1

(8.22)

I This leaves 3 “unknowns”: γ12, β12, β32

π22 = γ12β21

π12 = β12 + γ12β11

π32 = β32 + γ12β31

I We can estimate γ12 using the previous estimate for β21
I and then we can use β11, γ12 to estimate β12
I and use β31, γ12 to estimate β31
I This method is known as indirect least squares



Solution 1: Indirect Least Squares cont.

I Problem: indirect least squares does not work on 8.24

γ23 =
π43
β42

=
π43
π42

OK

but :

γ13 =
(π23 − γ23π22)

π21

γ∗13 =
(π33 − γ23π32)

π31

I in finite samples, γ13 6= γ∗13
I This is known as “overidentification” and comes from having

4 expressions for 3 unknowns



Solution 2: Instrumental Variables

I Find an appropriate instrumental variable for each endogenous
variable — these are known as “instrumental variables”

I The IVs will act as substitutes for explanatory variables that
are correlated with the explanatory variable, but uncorrelated
with the error term

I Obtain:
I Ẑ2 = Ŷ1 = reduced form
I Ẑ3 = Ŷ2 = reduced form

I Regress Y3 on X1, Ẑ2, and Ẑ3 to estimate 8.21

I Not unbiased, but it is consistent



Solution 3: Two-stage least squares

I A special case of the IV approach: combines all exogenous
variables to create a “best” IV

I Regress each endogenous variable (which are on RHS) on all
of the exogenous variables in the system, and use the
estimated values of each endogenous variable from these
regressions as IVs

1. Regress each endogenous variable (that is a regressor) on all
exogenous variables in the system of simultaneous equations,
and calculated the estimated values of the endogenous
variables

2. Use the estimated values of the endogenous variables as IVs

I This can be done “manually” in steps, or using the tsls()

command in R (requires the sem library)


