The Classical Linear Regression Model

ME104: Linear Regression Analysis
Kenneth Benoit

August 14, 2012
CLRM: Basic Assumptions

1. Specification:
 - Relationship between X and Y in the population is linear:
 \[E(Y) = X\beta \]
 - No extraneous variables in X
 - No omitted independent variables
 - Parameters (β) are constant

2. $E(\epsilon) = 0$

3. Error terms:
 - $\text{Var}(\epsilon) = \sigma^2$, or homoskedastic errors
 - $E(\epsilon_i, \epsilon_j) = 0$, or no auto-correlation
4. X is non-stochastic, meaning observations on independent variables are fixed in repeated samples
 - implies no *measurement error* in X
 - implies no serial correlation where a lagged value of Y would be used an independent variable
 - no *simultaneity* or *endogenous* X variables

5. $N > k$, or number of observations is greater than number of independent variables (in matrix terms: $\text{rank}(X) = k$), and no exact linear relationships exist in X

6. Normally distributed errors: $\epsilon|X \sim N(0, \sigma^2)$. Technically however this is a *convenience* rather than a strict assumption
Normally distributed errors

FIGURE 2.2 The Classical Regression Model.
Objective: minimize $\sum e_i^2 = \sum (Y_i - \hat{Y}_i)^2$, where

- $\hat{Y}_i = b_0 + b_1 X_i$
- error $e_i = (Y_i - \hat{Y}_i)$

$$ b = \frac{\sum (X_i - \bar{X})(Y_i - \bar{Y})}{\sum (X_i - \bar{X})} = \frac{\sum X_i Y_i}{\sum X_i^2} $$

The intercept is: $b_0 = \bar{Y} - b_1 \bar{X}$
OLS rationale

- Formulas are very simple
- Closely related to ANOVA (sums of squares decomposition)
- Predicted Y is sample mean when $\Pr(Y|X) = \Pr(Y)$
 - In the special case where Y has no relation to X, $b_1 = 0$, then OLS fit is simply $\hat{Y} = b_0$
 - Why? Because $b_0 = \bar{Y} - b_1 \bar{X}$, so $\hat{Y} = \bar{Y}$
 - Prediction is then sample mean when X is unrelated to Y
- Since OLS is then an extension of the sample mean, it has the same attractive properties (efficiency and lack of bias)
- Alternatives exist but OLS has generally the best properties when assumptions are met
OLS in matrix notation

- **Formula for coefficient β:**

 $$
 Y = X\beta + \epsilon \\
 X'Y = X'X\beta + X'\epsilon \\
 X'Y = X'X\beta + 0 \\
 (X'X)^{-1}X'Y = \beta + 0 \\
 \beta = (X'X)^{-1}X'Y
 $$

- **Formula for variance-covariance matrix:** $\sigma^2(X'X)^{-1}$

 - In simple case where $y = \beta_0 + \beta_1 * x$, this gives $\sigma^2 / \sum (x_i - \bar{x})^2$ for the variance of β_1
 - Note how increasing the variation in X will reduce the variance of β_1
The “hat” matrix

- The hat matrix H is defined as:
 \[
 \hat{\beta} = (X'X)^{-1}X'y \\
 X\hat{\beta} = X(X'X)^{-1}X'y \\
 \hat{y} = Hy
 \]

- $H = X(X'X)^{-1}X'$ is called the hat-matrix

- Other important quantities, such as \hat{y}, $\sum e_i^2$ (RSS) can be expressed as functions of H

- Corrections for heteroskedastic errors (“robust” standard errors) involve manipulating H
Three critical quantities

\(Y_i \): The observed value of dep. variable for unit \(i \)

\(\bar{Y} \): The mean of the dep. variable \(Y \)

\(\hat{Y}_i \): The value of outcome for unit \(i \) that is predicted from the model
Sums of squares (ANOVA)

TSS Total sum of squares \(\sum (Y_i - \bar{Y})^2 \)

SSM Model or Regression sum of squares \(\sum (\hat{Y}_i - \bar{Y})^2 \)

SSE Error or Residual sum of squares \(\sum e_i^2 = \sum (\hat{Y}_i - Y_i)^2 \)

The key to remember is that \(\text{TSS} = \text{SSM} + \text{SSE} \)
\[R^2 = \frac{\sum(\hat{y}_i - \bar{y})^2}{\sum(y_i - \bar{y})^2} \]

- Solid arrow: variation in \(y \) when \(X \) is unknown (TSS Total Sum of Squares \(\sum(y_i - \bar{y})^2 \))
- Dashed arrow: variation in \(y \) when \(X \) is known (SSM Model Sum of Squares \(\sum(\hat{y}_i - \bar{y})^2 \))
\(R^2 \) decomposed

\[y = \hat{y} + \epsilon \]

\[\text{Var}(y) = \text{Var}(\hat{y}) + \text{Var}(\epsilon) + 2\text{Cov}(\hat{y}, \epsilon) \]

\[\text{Var}(y) = \text{Var}(\hat{y}) + \text{Var}(\epsilon) + 0 \]

\[\sum (y_i - \bar{y})^2 / N = \sum (\hat{y}_i - \bar{y})^2 / N + \sum (e_i - \hat{e})^2 / N \]

\[\sum (y_i - \bar{y})^2 = \sum (\hat{y}_i - \bar{y})^2 + \sum (e_i - \hat{e})^2 \]

\[\sum (y_i - \bar{y})^2 = \sum (\hat{y}_i - \bar{y})^2 + \sum e_i^2 \]

\[TSS = SSM + SSE \]

\[\frac{TSS}{TSS} = \frac{SSM}{TSS} + \frac{SSE}{TSS} \]

\[1 = R^2 + \text{unexplained variance} \]
A much over-used statistic: it may not be what we are interested in at all

Interpretation: the proportion of the variation in y that is explained linearly by the independent variables

$$R^2 = \frac{SSM}{TSS} = 1 - \frac{SSE}{TSS} = 1 - \frac{\sum(y_i - \hat{y}_i)^2}{\sum(y_i - \bar{y})^2}$$

Alternatively, R^2 is the squared correlation coefficient between y and \hat{y}
When a model has no intercept, it is possible for R^2 to lie outside the interval $(0, 1)$

R^2 rises with the addition of more explanatory variables. For this reason we often report “adjusted R^2":

$$1 - (1 - R^2) \frac{n-1}{n-k-1}$$

where k is the total number of regressors in the linear model (excluding the constant)

Whether R^2 is *high* or not depends a lot on the overall variance in Y

To R^2 values from different Y samples *cannot be compared*
R^2 continued

$$R^2 = \frac{\sum(\hat{y}_i - \bar{y})^2}{\sum(y_i - \bar{y})^2}$$

- Solid arrow: variation in y when X is unknown (SSR)
- Dashed arrow: variation in y when X is known (SST)
R^2 decomposed

\[y = \hat{y} + \epsilon \]
\[\text{Var}(y) = \text{Var}(\hat{y}) + \text{Var}(\epsilon) + 2\text{Cov}(\hat{y}, \epsilon) \]
\[\text{Var}(y) = \text{Var}(\hat{y}) + \text{Var}(\epsilon) + 0 \]
\[\sum (y_i - \bar{y})^2 / N = \sum (\hat{y}_i - \bar{\hat{y}})^2 / N + \sum (e_i - \bar{e})^2 / N \]
\[\sum (y_i - \bar{y})^2 = \sum (\hat{y}_i - \bar{\hat{y}})^2 + \sum (e_i - \bar{e})^2 \]
\[\sum (y_i - \bar{y})^2 = \sum (\hat{y}_i - \bar{\hat{y}})^2 + \sum e_i^2 \]
\[\text{SST} = \text{SSR} + \text{SSE} \]
\[\text{SST} / \text{SST} = \text{SSR} / \text{SST} + \text{SSE} / \text{SST} \]
\[1 = R^2 + \text{unexplained variance} \]
Regression “terminology”

- y is the **dependent** variable
 - referred to also (by Greene) as a *regressand*

- X are the **independent** variables
 - also known as *explanatory* variables
 - also known as *regressors*

- y is **regressed on** X

- The error term ϵ is sometimes called a *disturbance*
Some important OLS properties to understand

Applies to \(y = \alpha + \beta x + \epsilon \)

- If \(\beta = 0 \) and the only regressor is the intercept, then this is the same as regressing \(y \) on a column of ones, and hence \(\alpha = \bar{y} \) — the mean of the observations
- If \(\alpha = 0 \) so that there is no intercept and one explanatory variable \(x \), then \(\beta = \frac{\sum xy}{\sum x^2} \)
- If there is an intercept and one explanatory variable, then

\[
\beta = \frac{\sum_i (x_i - \bar{x})(y_i - \bar{y})}{\sum (x_i - \bar{x})^2} = \frac{\sum_i (x_i - \bar{x})y_i}{\sum (x_i - \bar{x})^2}
\]
Some important OLS properties (cont.)

- If the observations are expressed as deviations from their means, \(y^* = y - \bar{y} \) and \(x^* = x - \bar{x} \), then \(\beta = \frac{\sum x^* y^*}{\sum x^*^2} \).

- The intercept can be estimated as \(\bar{y} - \beta \bar{x} \). This implies that the intercept is estimated by the value that causes the sum of the OLS residuals to equal zero.

- The mean of the \(\hat{y} \) values equals the mean \(y \) values – together with previous properties, implies that the OLS regression line passes through the overall mean of the data points.
. use dail2002
(Ireland 2002 Dail Election - Candidate Spending Data)

. gen spendXinc = spend_total * incumb
(2 missing values generated)

. reg votes1st spend_total incumb minister spendXinc

<table>
<thead>
<tr>
<th>Source</th>
<th>SS</th>
<th>df</th>
<th>MS</th>
<th>Number of obs = 462</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>2.9549e+09</td>
<td>4</td>
<td>738728297</td>
<td>F(4, 457) = 229.05</td>
</tr>
<tr>
<td>Residual</td>
<td>1.4739e+09</td>
<td>457</td>
<td>3225201.58</td>
<td>Prob > F = 0.0000</td>
</tr>
<tr>
<td>Total</td>
<td>4.4288e+09</td>
<td>461</td>
<td>9607007.17</td>
<td>R-squared = 0.6672</td>
</tr>
</tbody>
</table>

| votes1st | Coef. | Std. Err. | t | P>|t| | [95% Conf. Interval] |
|-------------------|-----------|-----------|-------|-------|----------------------|
| spend_total | .2033637 | .0114807 | 17.71 | 0.000 | .1808021 .2259252 |
| incumb | 5150.758 | 536.3686 | 9.60 | 0.000 | 4096.704 6204.813 |
| minister | 1260.001 | 474.9661 | 2.65 | 0.008 | 326.613 2193.39 |
| spendXinc | -.1490399 | .0274584 | -5.43 | 0.000 | -.2030003 -.0950794 |
| _cons | 469.3744 | 161.5464 | 2.91 | 0.004 | 151.9086 786.8402 |
> dail <- read.dta("dail2002.dta")
> mdl <- lm(votes1st ~ spend_total*incumb + minister, data=dail)
> summary(mdl)

Call:
 lm(formula = votes1st ~ spend_total * incub + minister, data = dail)

Residuals:
 Min 1Q Median 3Q Max
-5555.8 -979.2 -262.4 877.2 6816.5

Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) 469.37438 161.54635 2.906 0.00384 **
spend_total 0.203360 0.011480 17.713 < 2e-16 ***
incumb 5150.75818 536.36856 9.603 < 2e-16 ***
minister 1260.00137 474.96610 2.653 0.00826 **
spend_total:incumb -0.149040 0.027460 -5.428 9.28e-08 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 1796 on 457 degrees of freedom
 (2 observations deleted due to missingness)
Multiple R-squared: 0.6672, Adjusted R-squared: 0.6643
F-statistic: 229 on 4 and 457 DF, p-value: < 2.2e-16
Examining the sums of squares

```r
> yhat <- mdl$fitted.values  # uses the lm object mdl from previous
> ybar <- mean(mdl$model[,1])
> y <- mdl$model[,1]  # can't use dail$votes1st since diff N
> SST <- sum((y-ybar)^2)
> SSR <- sum((yhat-ybar)^2)
> SSE <- sum((yhat-y)^2)
> SSE
[1] 1473917120
> sum(mdl$residuals^2)
[1] 1473917120
> (r2 <- SSR/SST)
[1] 0.6671995
> (adjr2 <- (1 - (1-r2)*(462-1)/(462-4-1)))
[1] 0.6642865
> summary(mdl)$r.squared  # note the call to summary()
[1] 0.6671995
> SSE/457
[1] 3225202
> sqrt(SSE/457)
[1] 1795.885
> summary(mdl)$sigma
[1] 1795.885
```