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Simulation and bootstrapping

Used for:

I Gaining intuition about distributions and sampling

I Providing distributional information not distributions are not
directly known, or cannot be assumed

I Acquiring uncertainty estimates

Both simulation and bootstrapping are numerical approximations
of the quantities we are interested in. (Run the same code twice,
and you get different answers)

We have already seen simulation in the illustrations of the Central
Limit Theorem, in applications to estimating the mean of spending
from sample means.



Bootstrapping

I Bootstrapping refers to repeated resampling of data points
with replacement

I Used to estimate the error variance (i.e. the standard error) of
an estimate when the sampling distribution is unknown (or
cannot be safely assumed)

I Robust in the absence of parametric assumptions

I Useful for some quantities for which there is no known
sampling distribution, such as computing the standard error of
a median



Bootstrapping illustrated

. /*** illustrate bootstrap sampling ***/

. /* using sample to generate permutations of the sequence 1:10 */

. clear

. set obs 10

obs was 0, now 10

. gen x = _n

. list, clean

x

1. 1

2. 2

3. 3

4. 4

5. 5

6. 6

7. 7

8. 8

9. 9

10. 10



Bootstrapping illustrated

. bsample

. list, clean

x

1. 1

2. 5

3. 8

4. 3

5. 9

6. 6

7. 2

8. 5

9. 5

10. 9



Bootstrapping illustrated

. bsample

. list, clean

x

1. 5

2. 1

3. 8

4. 5

5. 6

6. 3

7. 9

8. 2

9. 8

10. 3



Bootstrapping the standard error of the median

/* boostrap SE of median */

use dail2002.dta, clear

/* analytic std error of mean */

quietly summ spend_total, detail

di "mean = " r(mean) " median = " r(p50)

di "analytic SE of mean = " r(mean) / sqrt(r(N))

bootstrap r(mean) r(p50), reps(1000) saving(day10bs1.dta, replace): ///

summ spend_total, detail

use day10bs1, clear

list in 1/10, clean

rename _bs_1 BSmean

rename _bs_2 BSmedian

kdensity BSmean, name(meandens)

kdensity BSmedian, name(meddens)



Bootstrapping the standard error of the mean
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Bootstrapping the standard error of the median
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Bootstrapping the standard errors of regression coefficients

/* boostrap SE of median */

use dail2002.dta, clear

/* analytic std error of mean */

quietly summ spend_total, detail

di "mean = " r(mean) " median = " r(p50)

di "analytic SE of mean = " r(mean) / sqrt(r(N))

bootstrap r(mean) r(p50), reps(1000) saving(day10bs1.dta, replace): ///

summ spend_total, detail

use day10bs1, clear

list in 1/10, clean

rename _bs_1 BSmean

rename _bs_2 BSmedian

kdensity BSmean, name(meandens)

kdensity BSmedian, name(meddens)



Uncertainty in regression models: the linear case revisited

I Suppose we regress y on X to produce b = (X ′X )−1X ′y

I Then we set explanatory variables to new values X p to predict
Y p

I The prediction Y p will have two forms of uncertainty:

1. estimation uncertainty that can be reduced by increasing the
sample size. Estimated a ŷp = X pb and depends on sample
size through b

2. fundamental variability comes from variability in the dependent
variable around the expected value E(Y p) = µ = X pβ – even
if we knew the true β



Estimation uncertainty and fundamental variability

I We can decompose this as follows:

Y p = X pb + εp

Var(Y p) = Var(X pb) + Var(εp)

= X pVar(b)(X p)′ + σ2I

= σ2X p((X p)′X p)−1 + σ2I

= estimation uncertainty + fundamental variability

I It can be shown that the distribution of Ŷ p is:

Ŷ p ∼ N(X pβ,X pVar(b)(X p)′)

I and that the unconditional distribution of Y p is:

Y p ∼ N(X pβ, X p Var(b)(X p)′ + σ2I )



Confidence intervals for predictions

I For any set of explanatory variables x0, the predicted response
is ŷ0 = x ′0β̂

I But this prediction also comes with uncertainty, and by
extension, with a confidence interval

I Two types:
I predictions of future observations: based on the prediction plus

the variance of ε (Note: this is what we usually want)

ŷ0 ± t
α/2
n−k−1σ̂

√
1 + x ′o(X ′X )−1x0

I prediction of mean response: the average value of a y0 with the
characteristics x0 – only takes into account the variance of β̂

ŷ0 ± t
α/2
n−k−1σ̂

√
x ′0(X ′X )−1x0



Confidence intervals for predictions in R

> summary(m1)$coeff

Estimate Std. Error t value Pr(>|t|)

(Intercept) 464.5955332 162.59752848 2.857335 4.466694e-03

spend_total 0.2041449 0.01155236 17.671273 1.154515e-53

incumb 4493.3251289 478.80828470 9.384393 2.962201e-19

spend_total:incumb -0.1068943 0.02254283 -4.741832 2.832798e-06

> fivenum(dail$spend_total) # what is typical spending profile

[1] 0.00 5927.32 14699.12 20812.66 51971.28

> x0 <- c(1, 75000, 1, 75000) # set some predictor values

> (y0 <- sum(x0*coef(m1))) # compute predicted response

[1] 12251.71

> fivenum(dail$votes1st) # how typical is this response?

[1] 19.0 1151.5 3732.0 6432.0 14742.0

> quantile(dail$votes1st, .99, na.rm=T) # versus 99th percentile

99%

11138.44

> x0.df <- data.frame(incumb=1, spend_total=75000)

> predict(m1, x0.df)

1

12251.71

> predict(m1, x0.df, interval="confidence")

fit lwr upr

1 12251.71 10207.33 14296.09

> predict(m1, x0.df, interval="prediction")

fit lwr upr

1 12251.71 8153.068 16350.36



Fundamental and estimation variability for non-linear forms
I For well-known cases, we known both the expectation and the

fundamental variability, e.g.
I Poisson E (Y ) = eXβ , Var(Y ) = λ
I logistic E (Y ) = 1

1+e−Xβ , Var(Y ) = π(1− π)

I Calculating the estimation variability is harder, but can be
done using a linear approximation from the Taylor series. The
Taylor series approximation of ŷp = g(b) is:

ŷp = g(b) = g(β) + g ′(β)(b − β) + · · ·

where g ′(β) is the first derivative of the functional form g(β)
with respect to β

I If we drop all but the first two terms, then

Var(Ŷ p) ≈ Var[g(β)] + Var[g ′(β)(b − β)]

= g ′(β)Var(b)g ′(β)′

I This is known as the Delta method for calculating standard
errors of predictions



Example: Delta method for Poisson

I Consider the Poisson model, where the stochastic component
is Y ∼ e−λλy

y ! and the systematic component is λ = eXβ

I The fundamental variability is Var(Y |λ) = λ

I To calculate the estimation variability:
I calculate the first derivative matrix:

g ′(β) =
δeXβ

δβ

= X · eXβ

where the · operator is element-by-element multiplication
I Then the estimated variance matrix of Ŷ p is:

Var(Ŷ p = (X p · eX
pb) ˆVar(b)(X p · eX

pb)′



Alternative: Estimating uncertainty through simulation

I King, Timz, and Wittenberg (2000) propose using statistical
simulation to estimate uncertainty

I Notation:

stochastic component Yi ∼ f (θi , α)
systmatic component θi = g(Xi , β)

For example in a linear-normal model,
Yi = N(µi , σ

2) and µi = Xiβ
simulated parameter vector γ̂ = vec(β̂, α̂)

The central limit theorem tells us we can simulate γ as

γ̃ ∼ N(γ̂, V̂ (γ̂))



Simulating predicted values

  ,  ,   

multivariate normal distribution with mean equal to   ̂γ
and variance equal to   

ˆ (ˆ )V γ .1 Using our notation,

  
˜ ~ ˆ , ˆ (ˆ )γ γ γN V( ) . (4)

Thus, we can obtain one simulation of γ by following
these steps:

1. Estimate the model by running the usual software
program (which usually maximizes a likelihood func-
tion), and record the point estimates   ̂γ  and variance
matrix   

ˆ ( ˆ )V γ .
2. Draw one value of the vector γ from the multivariate

normal distribution in Equation 4. Denote the   ̃γ =
  vec(˜, ˜)β α .

Repeat the second step, say, M = 1000 times to obtain
1000 draws of the main and ancillary parameters.

If we knew the elements of γ perfectly, the sets of
draws would all be identical; the less information we have
about γ (due to larger elements in the variance matrix),
the more the draws will differ from each other. The spe-
cific pattern of variation summarizes all knowledge
about the parameters that we can obtain from the statis-
tical procedure. We still need to translate γ into substan-
tively interesting quantities, but now that we have sum-
marized all knowledge about γ we are well positioned to
make the translation. In the next three subsections, we
describe algorithms for converting the simulated param-
eters into predicted values, expected values, and first
differences.

Predicted Values

Our task is to draw one value of Y conditional on one
chosen value of each explanatory variable, which we
represent with the vector Xc. Denote the simulated θ as

    θ̃c  and the corresponding Y as     Ỹc , a simulated predicted
value. Predicted values come in many varieties, depend-
ing on the kind of X-values used. For instance, Xc may
correspond to the future (in which case     Ỹc  is a simulated
forecast), a real situation described by observed data
(such that     Ỹc  is a simulated predicted value), or a hypo-
thetical situation not necessarily in the future (making

    Ỹc  a simulated counterfactual predicted value). None of

these is equivalent to the expected value (    ̂Y ) in a linear
regression, which we discuss in the following subsection.

To simulate one predicted value, follow these steps:

1. Using the algorithm in the previous subsection, draw
one value of the vector   ̃ (˜, ˜ ).γ β α= vec

2. Decide which kind of predicted value you wish to
compute, and on that basis choose one value for each
explanatory variable. Denote the vector of such val-
ues Xc .

3. Taking the simulated effect coefficients from the top
portion of   ̃γ, compute     

˜ ( , ˜)θ βc cg X= , where g(⋅,⋅) is
the systematic component of the statistical model.

4. Simulate the outcome variable     Ỹc  by taking a random
draw from     f c(˜ , ˜)θ α , the stochastic component of the
statistical model.

Repeat this algorithm, say, M = 1000 times, to produce
1000 predicted values, thereby approximating the entire
probability distribution of Yc . From these simulations
the researcher can compute not only the average pre-
dicted value but also measures of uncertainty around the
average. The predicted value will be expressed in the
same metric as the dependent variable, so it should re-
quire little specialized knowledge to understand.

Expected Values

Depending on the issue being studied, the expected or
mean value of the dependent variable may be more inter-
esting than a predicted value. The difference is subtle but
important. A predicted value contains both fundamental
and estimation uncertainty, whereas an expected value
averages over the fundamental variability arising from
sheer randomness in the world, leaving only the estima-
tion uncertainty caused by not having an infinite num-
ber of observations. Thus, predicted values have a larger
variance than expected values, even though the average
should be nearly the same in both cases.2

When choosing between these two quantities of in-
terest, researchers should reflect on the importance of
fundamental uncertainty for the conclusions they are
drawing. In certain applications, such as forecasting the
actual result of an election or predicting next month’s
foreign exchange rate, scholars and politicians—as well
as investors—want to know not only the expected out-
come, but also how far the outcome could deviate from
expectation due to unmodeled random factors. Here, a1This distributional statement is a shorthand summary of the

Bayesian, likelihood, and Neyman-Pearson theories of statistical
inference. The interpretive differences among these theories (such
as whether θ or   ̂θ  is the random variable) are important but need
not concern us here, as our approach can usually be employed
with any of these and most other theories of inference (see Barnett
1982).

2In linear models, the average predicted value is identical to the ex-
pected value. For nonlinear cases, the two can differ but are often
close if the nonlinearity is not severe.

Repeat this M = 1000 times to approximate the entire probability
distribution of Yc . Using this estimated distribution we can
compute mean and SDs which will approximate the predicted
values and their error.



Simulating expected values

     

predicted value seems most appropriate. For other appli-
cations, the researcher may want to highlight the average
effect of a particular explanatory variable, so an expected
value would be the best choice.

We now offer an algorithm for creating one simula-
tion of an expected value:

1. Following the procedure for simulating the param-
eters, draw one value of the vector   ̃ (˜ , ˜).γ β α= vec

2. Choose one value for each explanatory variable and
denote the vector of values as Xc .

3. Taking the simulated effect coefficients from the top
portion of   ̃γ , compute     

˜ ( , ˜)θ βc cg X= , where g(⋅,⋅) is
the systematic component of the statistical model.

4. Draw m values of the outcome variable     
˜( )Yc

k  (k =
1, . . . , m) from the stochastic component     f c(˜ , ˜)θ α .
This step simulates fundamental uncertainty.

5. Average over the fundamental uncertainty by calcu-
lating the the mean of the m simulations to yield one

simulated expected value 
    
˜( ) ˜( )E Y Y mc c

k
k

m= =∑ 1
.

When m = 1, this algorithm reduces to the one for pre-
dicted values. If m is a larger number, Step 4 accurately
portrays the fundamental variability, which Step 5 aver-
ages away to produce an expected value. The larger the
value of m, the more successful the algorithm will be in
purging ˜ )E Yc(  of any fundamental uncertainty.

To generate 1000 simulations of the expected value,
repeat the entire algorithm M = 1000 times for some
fixed value of m. The resulting expected values will differ
from each other due to estimation uncertainty, since each
expected value will correspond to a different   ̃γ . These M
simulations will approximate the full probability distri-
bution of E(Yc), enabling the researcher to compute aver-
ages, standard errors, confidence intervals, and almost
anything else desired.

The algorithm works in all cases but involves some
approximation error, which we can reduce by setting
both m and M sufficiently high. For some statistical
models, there is a shortcut that curtails both computa-
tion time and approximation error. Whenever E(Yc) = θc ,
the researcher can skip steps 4–5 of the expected value al-
gorithm, since steps 1–3 suffice to simulate one expected
value. This shortcut is appropriate for the linear-normal
and logit models in Equations 2 and 3.

First Differences

A first difference is the difference between two expected,
rather than predicted, values. To simulate a first differ-
ence, researchers need only run steps 2–5 of the expected
value algorithm twice, using different settings for the ex-
planatory variables.

For instance, to simulate a first difference for the first
explanatory variable, set the values for all explanatory
variables except the first at their means and fix the first
one at its starting point. Denote this vector of starting
values for the explanatory variables as Xs and run the ex-
pected value algorithm once to generate     

˜( )E Ys , the aver-
age value of Y conditional on Xs. Next change the value of
the first explanatory variable to its ending point, leaving
the others at their means as before. Denote the new vec-
tor as Xe and rerun the algorithm to get     

˜( )E Ye , the mean
of Y conditional on Xe. The first difference is simply

    
˜( ) ˜( )E Y E Ye s− . Repeat the first difference algorithm, say,

M = 1000 times to approximate the distribution of first
differences. Average the simulated values to obtain a
point estimate, compute the standard deviation to obtain
a standard error, or sort the values to approximate a con-
fidence interval.

We previously discussed expected values of Y, and
until now this section has considered first differences
based on only this type of expected value. Different ex-
pectations, such as Pr(Y = 3) in an ordered-probit model,
may also be of interest. For these cases, the expected
value algorithm would need to be modified slightly. We
have made the necessary modifications in CLARIFY, the
software package described in the appendix, which al-
lows researchers to calculate a wide variety of expected
values and first differences, as well as predicted values
and other quantities of interest.

The algorithms in this article do not require new as-
sumptions; rather, they rest on foundations that have be-
come standard in the social sciences. In particular, we as-
sume that the statistical model is identified and correctly
specified (with the appropriate explanatory variables and
functional form), which allows us to focus on interpret-
ing and presenting the final results. We also assume that
the central limit theorem holds sufficiently for the avail-
able sample size, such that the sampling distribution of
parameters (not the stochastic component) can be de-
scribed by a normal distribution.3 Although we focus on
asymptotic results, as do the vast majority of the applied
researchers using nonlinear models, simulation works
with finite sample distributions, which are preferable
when feasible. In short, our algorithms work whenever
the usual assumptions work.

Alternative Approaches

In this section, we discuss several other techniques for
generating quantities of interest and measuring the un-
certainty around them. These approaches can be valuable

3From a Bayesian perspective, we exclude unusual cases where a
flat prior generates an improper posterior.

Note: It is m that approximates the fundamental variability but Step 5
averages it away. A large enough m will purge the simulated result of any
fundamental uncertainty.

Repeat the entire process M = 1000 times to estimate the full probability

distribution of E (Yc).



Calculating standard errors in Zelig

## Examples from Homework 6

## titanic data qn3

titanic <- read.dta("titanic.dta")

levels(titanic$class) <- c("first","second","third","crew")

z.out <- zelig(survived ~ age+sex+class, model="logit", data=titanic)

summary(z.out)

x.kate <- setx(z.out, ageadults=1, sexman=1,

classsecond=0, classthird=0, classcrew=0)

x.kate[1,] <- c(1,1,0,0,0,0)

x.leo <- setx(z.out, ageadults=1, sexman=1,

classsecond=0, classthird=1, classcrew=0)

x.leo[1,] <- c(1,1,1,0,1,0)

summary(s.out <- sim(z.out, x=x.leo, x1=x.kate))



Calculating standard errors in Zelig
> summary(s.out <- sim(z.out, x=x.leo, x1=x.kate))

Values of X

(Intercept) ageadults sexman classsecond classthird classcrew

1 1 1 1 0 1 0

Values of X1

(Intercept) ageadults sexman classsecond classthird classcrew

1 1 1 0 0 0 0

Expected Values: E(Y|X)

mean sd 2.5% 97.5%

1 0.105 0.01205 0.08251 0.1290

Predicted Values: Y|X

0 1

1 0.888 0.112

First Differences in Expected Values: E(Y|X1)-E(Y|X)

mean sd 2.5% 97.5%

1 0.7791 0.02423 0.7291 0.8227

Risk Ratios: P(Y=1|X1)/P(Y=1|X)

mean sd 2.5% 97.5%

1 8.538 1.062 6.723 10.89



More standard errors in Zelig
## economic_bills data qn4b

ecbills <- read.dta("economic_bills.dta")

z.out <- zelig(status ~ cabinet + vpdi_LH92economic + xland,

model="logit", data=ecbills)

x.out <- setx(z.out)

x.out[1,] <- c(1,0,0,0,0,1)

summary(sim(z.out, x.out))

# for comparison:

predict(log2,new=data.frame(cabinet=0,vpdi_LH92economic=0,xland="UK"),

type="response", se=T)

## economic_bills data qn4c

x.out[1,] <- c(1,1,5,1,0,0)

summary(sim(z.out, x.out))

# for comparison:

predict(log2,new=data.frame(cabinet=1,vpdi_LH92economic=5,xland="FRA"),

type="response",se=T)

## economic_bills data qn4d

(x.out <- setx(z.out, vpdi_LH92economic=seq(0,10.4,.1)))

x.out[,2] <- 0

x.out[,5] <- 1

s.out <- sim(z.out, x.out)

plot.ci(s.out)

lines(seq(0,10.4,.1), apply(s.out$qi$ev,2,mean))



Plot from Homework 6 Question 4d
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Predicted values from Benoit (1996)
> weede <- read.dta("weede.dta")

> z.out <- zelig(ssal6080 ~

+ fh73+lpopln70+lmilwp70, model="poisson", data=weede)

> (x.out <- setx(z.out, fh73=2:14))

(Intercept) fh73 lpopln70 lmilwp70

1 1 2 4.036 0.954

2 1 3 4.036 0.954

3 1 4 4.036 0.954

4 1 5 4.036 0.954

5 1 6 4.036 0.954

6 1 7 4.036 0.954

7 1 8 4.036 0.954

8 1 9 4.036 0.954

9 1 10 4.036 0.954

10 1 11 4.036 0.954

11 1 12 4.036 0.954

12 1 13 4.036 0.954

13 1 14 4.036 0.954

> s.out <- sim(z.out, x=x.out)

> summary(s.out)

Model: poisson

Number of simulations: 1000

Mean Values of X (n = 13)

(Intercept) fh73 lpopln70 lmilwp70

1.000 8.000 4.036 0.954

Pooled Expected Values: E(Y|X)

mean sd 2.5% 97.5%

0.3221 0.1085 0.1449 0.5697

Pooled Predicted Values: Y|X

mean sd 2.5% 97.5%

0.3259 0.5840 0.0000 2.0000



Replicate part of Table 3 from Benoit (1996)

> ## replicate part of Table 3 from Benoit (1996)

> z.tab2NBpoldem <- zelig(butterw ~ poldem65, model="negbin", data=weede)

> x.tab2NBpoldem <- setx(z.tab2NBpoldem, poldem65=c(0,20,55,85,100))

> s.tab2NBpoldem <- sim(z.tab2NBpoldem, x=x.tab2NBpoldem)

> cbind(apply(s.tab2NBpoldem$qi$ev, 2, mean),

+ apply(s.tab2NBpoldem$qi$ev, 2, sd))

[,1] [,2]

[1,] 1.7378 0.4969

[2,] 1.4819 0.3092

[3,] 1.1445 0.1644

[4,] 0.9364 0.1971

[5,] 0.8532 0.2290

> x.tab2NBfh73 <- setx(z.tab2NBfh73, fh73=c(2,4,7,12,14))

> s.tab2NBfh73 <- sim(z.tab2NBfh73, x=x.tab2NBfh73)

> cbind(apply(s.tab2NBfh73$qi$ev, 2, mean),

+ apply(s.tab2NBfh73$qi$ev, 2, sd))

[,1] [,2]

[1,] 1.4611 0.3421

[2,] 1.3210 0.2414

[3,] 1.1470 0.1709

[4,] 0.9308 0.2273

[5,] 0.8642 0.2674
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TABLE 3 

Fitted Values: Bivariate Negative Binomial Model 

Expected War Count Expected War Count 

POLDEM 1965 Butterworth Small-Singer Freedom House 1973 Butterworth Small-Singer 

0 1.84 0.79 2 1.55 0.66 

20 1.53 0.62 4 1.36 0.55 

55 1.10 0.42 7 1.12 0.42 

85 0.84 0.30 12 0.81 0.27 

100 0.73 0.25 14 0.71 0.23 

Mean SE (0.27) (0.14) (0.23) (0.11) 

substantial gain in precision of the coefficient estimates using the improved models, 
indicated by the standard errors. In both the Poisson and the negative binomial models, 
in fact, all coefficients on the democracy variables are statistically significant at the 

conventional .05 level for a one-sided test. That this should hold true for the Poisson 

indicates that the overdispersion may not be as serious a problem in these data as 

expected. The estimates of 2 are consistently around 2.5 for the Butterworth wars and 

around 1.5 for the Small-Singer wars. This indicates that the fundamental variability 
for the two war counts, or V(Yi), was roughly two-and-a-half and one-and-a-half times 

greater than E(Yi), respectively. 
Table 3 directly interprets the substantive meaning of the coefficient estimates by 

using fitted values. It indicates the expected number of wars for a nation at different 

levels of democracy. The least democratic countries, as measured by POLDEM, fought 
Butterworth wars at an average rate of more than two times greater than nations 

completely democratic. As measured by the Small-Singer wars, this rate was three to 

four times greater. Very similar rates are obtained by comparing the average war 

involvement at different levels of the Freedom House democracy scores, lending 
additional confidence to these results. Regardless of the measures of democracy or 

war involvement one uses, the analysis indicates that fully free countries fought 

approximately one fewer of each type of war than nonfree states. Regime type means 

an average difference of one war for individual countries, with even greater implica- 
tions for large groups of countries. This is a major repudiation of the previous 
consensus that democratic states are no less war prone than states with other regime 

types. The expectation of one less war over a 20-year period is both a substantively 
and statistically significant result. 

Interpreting the variance of the predictions from this model is also substantively 

interesting. With the differences among nations in the sample, the numerous idiosyn- 
crasies in factors leading to war involvement, and the fact that regime type is only one 

cause of war, we should expect substantial variation to underlie the average relation- 

ship predicted by the model. Figure 1 plots the negative binomial regression line, 

surrounded by the dashed line indicating one standard error, through the observations 

in each regression from Table 2. The total variance in expected rates of war involve- 

ment-taking account the fundamental variability represented by &2-_-is large rela- 



Replicate top part of Figure 1 from Benoit (1996)
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Figure 1: War Involvement as a Function of Regime Type 
NOTE: Each point represents an observation. The solid line indicates the negative binomial regression line 
from Table 2. The dashed line bounds the region of one standard error. 

active-duty personnel per capita. Economic interdependence is measured by adding 

imports and exports and dividing by per capita gross national product. Finally, energy 

consumption per capita is used as an indicator of socioeconomic development. Data 

for the control variables come from Charles Taylor's (1985) World Handbook of 
Political and Social Indicators III, 1948-1982 for the year 1970, except for the measure 

of economic interdependence, which was taken from Arthur Banks's (1976) Cross- 

National Time Series data set. I used decimal logarithms to reduce skewness in all 

variables except economic interdependence. 
Precise scales are provided in the text accompanying Table 4, although the purpose 

here is not to test alternate theories of war but merely to investigate the robustness of 

the democracy-war relationship. It is satisfying to note that the coefficients for the 

control variables behave generally as expected: larger countries and countries with 

larger militaries were more involved in more wars, and more economically interde- 

pendent countries fought fewer wars. 

The results show that the democracy coefficients estimated in the bivariate models 

are indeed robust to adding control variables. Table 4 presents regressions of only the 

Small-Singer wars, but analysis of the Butterworth measures shows nearly identical 

results. Neither the estimates nor the standard errors change significantly when the 

control variables are added, with the exception of the energy consumption per capita 
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Replicate Benoit and Marsh (PRQ, 2009) Figure 2
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Figure 2. Effect of spending on probability of winning a seat, comparing Challengers 

and Incumbents. Dashed lines indicates two standard errors. Predicted probabilities and 

standard errors estimated using CLARIFY, based on probit regression in Table 4. 

 

 



Compare models fits using a Receiver Operating Characteristic (ROC) plot

## plot an ROC plot comparing challengers v. incumbent predictions

dail.incumb <- subset(dail, incumb==1, select=c(wonseat,pspend_total,incumb,m))

dail.chall <- subset(dail, incumb==0, select=c(wonseat,pspend_total,incumb,m))

z.out.i <- zelig(wonseat ~ pspend_total+m, model="probit", data=dail.incumb)

z.out.c <- zelig(wonseat ~ pspend_total+m, model="probit", data=dail.chall)

rocplot(z.out.i$y, z.out.c$y, fitted(z.out.i), fitted(z.out.c),

lty1="solid", lty2="solid", col2="blue", col1="red")

text(.6,.55,"Incumbents",col="red")

text(.8,.85,"Challengers",col="blue")
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