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Abstract

The long time series of estimated party policy positions generated by the Comparative Manifesto
Project (CMP) is the only such time series available to the profession and has been extensively
used in a wide variety of applications. Recent work (e.g. Benoit, Laver, and Mikhaylov 2009;
Klingemann et. al. 2006, chs. 4–5) focuses on non-systematic sources of error in these estimates
that arise from the text generation process. Our concern here, by contrast, is with error that arises
during the text coding process, since nearly all manifestos are coded only once by a single coder.
First, we discuss reliability and misclassification in the context of hand-coded content analysis
methods. Second, we report results of a coding experiment that used trained human coders to
code sample manifestos provided by the CMP, allowing us to estimate the reliability of both
coders and coding categories. Third, we compare our test codings to the published CMP “gold
standard” codings of the test documents to assess accuracy, and produce empirical estimates of
a misclassification matrix for each coding category. Finally, we demonstrate the effect of coding
misclassification on the CMP’s most widely used index, its left-right scale. Our findings indicate
that misclassification is a serious and systemic problem with the current CMP dataset and coding
process.
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1 Reliability versus Validity in Content Analysis

Sooner or later, anyone interested in measuring policy positions of political actors turns to the sys-

tematic analysis of political texts. Measuring policy positions by analyzing political texts satisfies a

number of key scientific criteria. The act of measurement does not disturb what is being measured,

a claim difficult to sustain for any type of survey, during which ideas can be put into people’s heads

by the very questions they are asked. Once deposited on record, as it has been from ancient times,

text lasts forever, in contrast to surveys, which cannot be conducted in the past. Once captured, text

does not change, and this makes it possible to devise computational techniques that always yield the

same result when applied to the same text, a quality of reproducibility that will not apply to repeated

questioning of survey respondents. Nor does text wear out, once captured, no matter how many times

we torture it through repeated analysis. Once we have captured an expert survey panel, by contrast,

we can only torture them so often without polluting our source of data.

Text is plentiful and cheap. Indeed, in contrast to the typical data problems facing researchers

in the social sciences, the main problem with text data is that there is too much of it, not too little.

This cornucopia of text confronts us with two particular problems. The first concerns which texts to

analyze—essentially a problem of content validity. No matter how sophisticated our analysis of a

given text, our results are of no value if the text is not a valid source of information about the matter

under investigation. Putting aside this obvious though difficult matter, however, our focus in this

paper concerns the second problem: how best to estimate policy positions from a valid text corpus.

Since this corpus must be vastly reduced in complexity in order to be of any use to social scientists,

this implies developing a systematic scheme for converting the text into usable quantities. The most

common approach by far is to analyze the content of texts using a categorical scheme consisting of

two steps (Krippendorff, 2004, 219). First, texts are parsed into smaller units relevant to the research

question, such as words, sentences, or quasi-sentences, depending on the research design. Following

this first step of unitization, a second step involves coding each unit by assigning a category from the
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coding scheme to each text unit. Both steps can be held to scrutiny not just in terms of the validity of

the resulting information, but also in terms of the reliability of the procedure, two criteria that must

often be traded off with one another in practice.

Whenever non-deterministic instruments—such as human beings—are used to unitize and code

texts, then the content analysis procedure faces potential problems with reliability. Depending on

how unreliable the procedure is, estimates constructed from the codings may also lack validity be-

cause of the level of noise or even bias introduced by the content analysis procedure. Reliability is

no guarantee of validity, however, and in practice validity tends to suffer in the pursuit of maximizing

reliability. Indeed, the debate over machine versus human coded content analysis largely revolves

around the tradeoff between reliability and validity. Proponents of computerized schemes for es-

timating party positions from political manifestos (e.g. Laver, Benoit and Garry, 2003; Laver and

Garry, 2000; Slapin and Proksch, 2008) cite perfect reliability in their favor, yet struggle to demon-

strate validity. Hand-coded schemes such as the CMP claim validity as a central advantage but then

devote huge resources to attempts to enhance reliability (see for instance Klingemann et al., 2006,

chs.4–6).

As a thought experiment, suppose we want to estimate the position on a left-right scale of French

president Nicolas Sarkozy, using as texts the complete set of speeches he made on the record during

2009. Leaving aside more nuanced ideological differences for the moment, assume we propose

a new coding scheme consisting of two categories, “left” and “right”, and that the task is to tag

each sentence from Sarkozy’s speeches according to this binary classification. To code the texts

with this scheme, we could recruit a panel of scholars accepted within the profession as the world’s

greatest experts on French politics, ask them to read the Sarkozy speeches and then classify each

sentence as left or right. The experts must apply subjective judgments based on their interpretation

of the each sentence’s meaning, and will surely disagree on how at least some sentences should be

classified. Indeed, this ability to apply judgment is precisely why we choose trained coders over, say,
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chimpanzees, whose expected agreement would have been 25% through pure chance. Yet subjective

judgments are at the very least subject to stochastic variation. Furthermore, our coders might judge

that many sentences in Sarkozy’s text have nothing to do with either left or right in French politics

yet, asked to code these, may nonetheless assign some sentences to “left” or “right”. Finally, our

coders might tend to categorize ambiguous sentences as “right” given their contextual knowledge

about Sarkozy—sentences that might have been classified as “left” if the identical words had been

spoken by someone known to belong to a socialist or communist party. Our procedure will therefore

be likely to yield different answers each time we repeat it. Part of the problem has arisen from the

fundamentally indeterminate nature of human judgment, but this problem has been compounded an

ambiguous coding scheme itself—two interrelated matters to which we return at length below.

Ideally, of course, we would like the policy positions we estimate from political texts to be valid

and unbiased, constructed from procedures that are perfectly reliable and reproducible. A research

procedure, according to Krippendorff,

is reliable when it responds to the same phenomena in the same way regardless of the
circumstances of its implementation...In content analysis, this means that the reading of
textual data as well as of the research results is replicable elsewhere, that researchers
demonstrably agree on what they are talking about. (Krippendorff, 2004, 211)1

In any content analysis scheme using the subjective judgments of human coders to apply a coding

scheme with any degree of substantive meaning, however, perfect reliability is impossible. Our first

task as data analysts, therefore, is to identify and characterize problems of validity and reliability,

as well as potential consequences (such as bias) in our research procedure and resulting estimates.

Absent this, our estimates are worthless. Indeed they are in a real sense worse than worthless since

we have no idea at all how good or bad they are, completely undermining any procedural confidence

in the results produced by the research. When it comes to interpreting data, an unreliable research

procedure casts basic doubts on the substantive meaning of the data and on any analysis of these
1Krippendorff (2004, 214) identifies three types of reliability: stability, reproducibility, and accuracy. Stability is

concerned with possible change of coding results on repeated trials. This type of reliability has a coder reanalyzing the
same manifesto after a period of time in order to highlight any intra-coder disagreement. A stronger measure of reliability
is reproducibility, also called inter coder reliability. This measure assesses the degree of replication of coding results by
two distinct coders working separately. It covers intra-coder disagreement and inter-coder differences in interpretation and
application of the coding scheme. Accuracy tests the conformity of coding process and data generation procedure to some
canonical standard, and is perceived to be the strongest test of reliability. It can be used effectively at the training stage
when coder’s performance can be compared to some ‘true’ results.
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(Krippendorff, 2004, 212). Our first priority should therefore be to characterize problems regarding

validity, reliability, and bias in our research procedure; our second task to work as hard as we can to

minimize their effects.

In what follows, our main substantive interest lies in measuring party policy positions on the basis

of systematic analyses of party manifestos conducted by the longstanding Comparative Manifestos

Project (CMP) (Budge et al., 2001; Klingemann et al., 2006). CMP data are widely used by third

party researchers to measure policy positions of political parties on an election-by-election basis,

indeed they are profession’s primary source of such data. We know axiomatically that these data have

problems of validity, reliability and bias, just as all data do. The task we set ourselves in this paper

is to develop a more systematic characterization of some of these problems than has hitherto been

attempted. In what follows, we set out a framework for reliability and misclassification in categorical

content analysis, and apply framework this to the CMP coding scheme. To come to concrete terms

with reliability and misclassification in the context of the CMP, we designed and carried out a series

of coding experiments on texts for which the CMP has supplied a “correct” coding, and we report

on these tests. Finally, we discuss these results and their implications for continued use of the CMP

research. Our aim in doing this is to enhance our ability to draw reliable, valid and unbiased statistical

inferences from the CMP data, which remains the profession’s main source of text-based time series

data on party policy positions.

2 The CMP Coding Scheme and Sources of Disagreement

Elsewhere (Benoit, Laver and Mikhaylov, 2009) we describe the full process generating the CMP

dataset; here our focus is on the CMP coding scheme and the way that human coders assign coding

categories to each text unit. CMP estimates of the policy position of a particular party on a partic-

ular matter at a particular election are generated by using a trained human coder to allocate every

sentence unit in the party’s manifesto into one, and only one, of 57 policy coding categories (one

of which is “uncoded”).2 The first CMP coding category, for example, is “101: Foreign special re-

lationships: positive”. Having counted text units allocated to each category, the CMP then uses its

theoretical “saliency” model of party competition to inform a measurement model that defines the

2In the extended coding scheme developed in MPP2 to allow subcategories to be applied to manifestos from Central
and Eastern European countries plus Mexico, an additional 54 subcategories were developed, designed to be aggregated
into one of the standard 56 categories used in all countries. For the purposes of computing indexes such as Rile, however,
the subcategories were not aggregated or used in any way. For these reasons and the general wish to keep the focus as
simple as possible in this paper, our analysis here is restricted to the original 56 + uncoded standard CMP categories.
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relative salience for the party of the policy area defined by each category as the percentage of all text

units allocated to that category.

In what follows, we leave to others the important question of whether party manifestos are valid

sources of information about the policy positions of political parties. We also leave for future work

the potential for coding bias, which arises because human coders are inevitably aware of the author-

ship of the texts they are coding, a problem especially acute for highly self-referential documents such

as party manifestos. We deal elsewhere (Benoit, Laver and Mikhaylov, 2009) with non-systematic

measurement error in CMP data that arises from stochastic features of the text generation process.

Here, we focus on error arising in CMP data from stochastic and systematic features of the text cod-

ing process — specifically, the potential failure for different coders to reliably apply the same codes

to the same text, including the possibility that coders will make systematic errors in applying codes

to text. We refer to this coding error in general terms as misclassification.

2.1 Coding differences from human “features”

CMP data are fundamentally susceptible to coding error because, of their essence, they derive from

subjective judgments made by human coders. These days, indeed, human coding is preferred to

machine coding in settings where it is explicitly felt that subjective coding by human experts is more

valid than objective coding by machines. Coding error arises because different human coders at the

same time, or the same human coder at different times, are likely to code the same text in somewhat

different ways. This process may be unbiased, in the sense that we can think of an unobservable

“true and certain” value of the quantity being measured, with each human text coding being a noisy

realization of this. Assuming unbiased coding, we can take the mean of the noisy realizations as an

estimate of the unobservable latent quantity, and the variation in these observations as a measure of

the uncertainty of this estimate.3

The CMP data, however, are generated by party manifestos coded once, and once only, by a

single human coder. There is no variation in noisy realizations of the unobservable underlying quan-

tity and thus no estimate can be formed of the uncertainty of CMP estimates arising from coding

errors. In a nutshell, we have no way of knowing whether subsequent codings of the same manifesto

would be exactly the same as, or completely different from, the recorded coding that goes into the

3We do not deal here with a deep and interesting possibility that has largely been ignored, that the latent quantity being
measured has an uncertain value—in this context that party policy on some issue is vague. In this case, it may be that
variation in realizations of this latent quantity arises not just from measurement noise, but from fundamental uncertainty
in the quantity being measured.
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CMP dataset. We are very confident, however, on the basis of both anecdotal evidence and good old

fashioned common sense that, if there were to be a series of independent codings of the same mani-

festo, then these would all differ at least somewhat from each other. Indeed, if someone reported that

1,000 highly trained coders had each coded 10,000 manifesto text units using the CMP’s 57 category

scheme, and that every single coder had coded every single text unit in precisely the same way, then

our overwhelming suspicion would be that the data had been faked.

2.2 Coding differences from category ambiguities

CMP coders often report difficulties determining precisely which of the coding categories to assign

to text units. Hence important sources of coder error are the ambiguities and overlap that exist in

the way that some of the categories are defined. Consider the distinction between the following

categories:

“401: Free enterprise: Favorable mentions of free enterprise capitalism; superiority of
individual enterprise over state control systems...”

“402: Incentives: Need for wage and tax policies to induce enterprise...”

There is of course a difference between these category definitions but it is easy to imagine text for

which the coder’s decision as to which category is most appropriate would be a knife-edge judgment,

one that would be made in different ways by different coders. In contrast “501: Environmental pro-

tection” is essentially the only CMP coding category making explicit reference to the environment,

so there is nowhere else in the scheme to allocate text units referring to the environment (a decision

that, incidentally, renders anti-environmentalist statements uncodable by the CMP). Any text coding

scheme must be viewed as a whole, taking into account overlaps and the sharpness of boundaries

between categories as well as the definitions of each category on a stand-alone basis. However, we

do expect some CMP coding categories to be more “reliable” (different coders tend to code the same

text unit into the category in question) than others (different coders do not all use the category in

question for the same text unit.) As we shall see, this is very much what we find in our coding

experiments.

In practice the full 56-category coding scheme is never deployed on any one manifesto and the

norm is for far fewer than the full set of categories are used in the coding of a typical manifesto.

Analysis of the CMP-provided dataset shows that the typical manifesto coding uses only 25 cate-

gories, less than half of those available. Coding category usage ranges from startlingly mono-themed
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manifestos such as the 1951 Australian National Party manifesto which consisted of 42 text units

all assigned to a single category (“703: Farmers Positive”), to a maximum of 51 different categories

used to code the 365 text units found in the 1950 British Conservative Party manifesto.

2.3 From categories to scales

One response to overlapping or vague boundaries between text coding categories is to combine these,

to produce a more reliable aggregate category. In addition, what amounts to the 56-dimensional

policy space measured by the CMP manifesto codings is cumbersome to use as an operationalization

of specific models of party competition. Furthermore, as a matter of practical fact, most third-party

users of CMP policy time series data are looking for something much simpler; nearly all of them,

indeed, are looking for party positions on a single left-right scale.

In response to these interlocking demands, the CMP is best known for its left-right “Rile” scale,

which the CMP itself calls its “crowning achievement” (Budge et al., 2001, 19). This is a simple

additive index based aggregating 13 coding categories seen as being on the “left”, 13 seen as being

on the “right”, and subtracting the percentage of aggregated left categories from those of the right.

The theoretical range of this scale is thus [-100, 100], although in practice nearly all Rile scores span

the scale’s middle range of [-50, 50]. The aggregate “Rile” scale is potentially more reliable than any

single coding category, since it is likely that most of the stochastic variation in text coding will result

from different coders allocating the same text unit to different categories on the “left” or the “right”.

From the perspective of the left-right scale that most third-party users are interested in, such coding

“errors” are in effect self-canceling.4 In our tests below, we critically examine this claim.

4This problem, which the CMP has termed “coding seepage” (Klingemann et al., 2006, 112), is thought to mainly take
place in between categories within the same aggregate categories. Analysis of coding decisions conducted by the CMP
team suggests several categories prone to systematic misclassification. Thus coding categories that have been identified as
“seeping” codes (in brackets): Per101 (Per104), Per302 (Per303 and Per305), Per504 (Per503), Per601 (Per606), Per603
(Per605 and Per606), Per607 (Per705 and Per706); Per102 (Per103), Per105 (Per106 and Per107), Per505 (Per303), Per507
(Per303), Per702 (Per704), Per412 (Per403 and Per413), Per409 (Per404) (Klingemann et al., 2006, Table 6.1:114). Earlier
investigation also identified per408 (per410) and per402 (per703) (Volkens, 2001a, 38). The majority of “seepage”-prone
categories belong to the same aggregate scales, however, prompting the CMP to recommend their “own preferred strategy”
of using the aggregate scores to limit the effect of single category misclassifications. Because the components of the Rile
index “combine closely related categories, the coding errors created by ambiguity between these are eliminated. The overall
measures are thus more stable and reliable than any one of their components” (Klingemann et al., 2006, 115). Other, lesser-
used combined scale categories are “planeco,” “markeco,” and “welfare,” representing the orientation towards a planned
economy (403+404+412), a market economy (401+414), and the state provision for welfare (503+504) respectively. (See
the Appendix for details.)
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2.4 Strategies to maximize reliability

Previous work investigating the reliability of the CMP scales has focused on different and quite

specific aspects of the issue. The CMP’s approach to coding reliability is to focus on procedures of

coding used in data production (Klingemann et al., 2006, 107). Possible problems of coding error that

we discuss below are approached by emphasizing rigorous training—“setting and enforcing central

standards on coders”—and also by constant communication and interaction with the supervisor in

Berlin (Volkens, 2001b, 94), (see also Volkens, 2001a, 37-40). Specifically the CMP has done this

by setting out to train all CMP coders to code the same two manifestos in the same way as a CMP

“gold standard” coding that is taken to reflect a “certain truth” about the policy positions expressed

in those manifestos used as training documents.

The CMP has invested great effort into improving the quality of its process for training coders.

Based on the first evaluation of test results, a new version of coding instructions was produced

(Volkens, 2007, 118).5 The revised instructions draw particular attention to three specific ambi-

guities in the CMP coding scheme affecting coding reliability: when no category seems to apply

to the quasi-sentence, when more than one category seems to apply, and when the statement in the

quasi-sentence is unclear (Klingemann et al., 2006, 170). When the statement seems unclear the

coder is advised to seek cues from the context and/or contact the supervisor in Berlin.

Other investigations of reliability have specifically targeted possible error in the the aggregated

indexes, namely “Rile.” McDonald and Mendes (2001) and Klingemann et al. (2006, Chapter 5)

focus on the issue of measurement error in the “Rile” scale as an approach to assessing reliability.

Exploiting the panel structure of the data set and using the Heise measurement model (Heise, 1969),

the authors claim to be able to sift out measurement error from real change. From the results, and

making some pretty strong theoretical assumptions and assumptions about the latent reliability struc-

ture, they conclude that “Rile” is effectively very close to being perfect (Klingemann et al., 2006,

103). Such tests focus on very different issues from those of stability and reproducablity faced here,

however, where our primary concern is whether coders can reliably implement the CMP coding in-

structions without serious misclassification errors. Only a direct comparison of different coders on

the same text, as well as to a “gold standard”, offers the possibility of a true test of coding reliability

and the potential for systematic tendencies for misclassification.

5Hearl (2001) investigated possible coding differences following the structural change that happened in 1983 with the
transition to the CMP from the original MRG set up. He finds no evidence of methodological error across that “fault line”
with comparable analyses producing the same results in the subsample before 1983 and dataset as a whole.
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3 A Framework for Stochastic Misclassification of Text Categories

Misclassification is a central concern in many fields, particularly in medicine where “coding errors”

can mean the difference between avoiding an unnecessary, costly, and invasive procedure and dying

from cancer. In this view, each unit (or “subject”) belongs to some objectively “true” category, al-

though our coders (or “raters”) can only approximate this true category by assigning it a category

according to their best judgment. The difference between the true and assigned category is mis-

classification, and this misclassification, to the extent that its realization differs between coders, will

reduce reliability of the coding procedure. Note that while we take the position that there is indeed

a “true” category to which each sentence belongs—even if no human coders can agree on precisely

what this is—reliability as we have defined above it depends only on coder agreement, not on coder

adherence to some perfect (and possibly unknowable) standard. Because the entire foundation of the

CMP approach is that each text unit can be assigned to either a given category or declared “uncoded,”

however, this implies the existence of a “true” coding, and all evidence so far uncovered points to

coders making stochastic misclassifications roughly around these true categories. Without getting

into the ultimately metaphysical questions about the CMP’s notion of a gold standard coding of any

given text, therefore, we take the existence of such a standard as given and proceed on that basis.

Our discussion here follows the framework of Kuha, Skinner and Palmgren (2000) and Bross

(1954). In formal terms, let the true categories of each text unit i be represented by Ai, whose

values are well-defined and fixed, but classified with error as A∗i . Misclassification occurs through a

stochastic process

Pr(A∗i = j|Ai = k) = θ jk (1)

where j,k = 1, . . . ,m for m possible (nominal) classification categories. The key to this process is the

parameter θ jk which may be viewed as the proportion of population units in the true category k that

would be represented by coders as category j. These parameters θ jk form a misclassification matrix

Θ of dimensions m×m whose elements are all non-negative and whose columns sum to one.

If a coding scheme could be applied to text units perfectly, then Θ would consist of an m×m

identity matrix. To the extent that there are off-diagonals in Θ, however, then misclassification will

produce biased estimates of the true proportions of Ai, depending on the degree of systematic errors

present in misclassification as well as purely stochastic errors applied to unequal Ai proportions.

Through experiments and with comparison to a “gold standard”, we can estimate this degree of bias.
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Following Kuha and Skinner (1997), for a text, let NA
j be the number of text units for which Ai = j,

and let PA
j = NA

j /N, where N = ∑NA is the total number of text units. Our objective is to estimate

the vector PA = (PA
1 , . . . ,PA

m)′ of proportions of each category of manifesto code from the coding

scheme, for our given text—in other words, the CMP’s “per” variables. When Θ contains non-zero

off-diagonal elements, we will observe only the misclassified proportions PA∗, for which

E(PA∗) = ΘPA (2)

The bias from misclassification will then be expressible as

Bias(PA∗) = (Θ− I)PA (3)

where I is the m×m identity matrix. Our task in assessing misclassification and the unreliability of

the coding procedure that follows, therefore, is to obtain estimates of the misclassification matrix Θ.

To the extent that this misclassification matrix differs from identity, then the observed (and misclas-

sified) proportions of coding categories will be unreliable and generally biased estimates of the true

proportions of the textual content.

Misclassification is also frequently expressed in terms of the sensitivity of a test (as well as the

related concept of specificity) (see e.g. King and Lu, 2008; Rogan and Gladen, 1978). Sensitivity

refers to Pr(A∗i = k|Ai = k), or in our context, for example, the ability of the coding process to

classify a given text unit to its correct coding category. In the three-part “Rile” classification, for

example, sensitivity is the probability that a sentence is coded as “left” when it really is “left”, or is

coded as “right” when it really is “right”, or coded as “neither” when it really is neither left nor right.

Sensitivity can also be expressed as the true positive rate, or conversely, in terms of the false negative

rate. In the language of hypothesis testing, the false negative rate β represents the probability of a

Type II error—here, the probability of coding a sentence into a a wrong category ∼ k when it really

belongs to a category k.6 A coding scheme with a high sensitivity will mean that text units will tend,

with a high degree of reliability, to be assigned to the category the to which the text units do in truth

belong. Our testing framework allows us to estimate specificity directly, and this forms our focus in

6The converse of sensitivity is specificity, the rate at which Pr(A∗i 6= k|Ai 6= k), or in our context, the probability that a
sentence is not classified as a given category when it really does not belong to that category, or the rate of true negatives.
Specificity’s converse is often expressed as α, the false positive rate, known in hypothesis testing as the probability of a
Type I error. If the null hypothesis were that A 6= k, then a Type I error would be the conclusion that A = k, or a false
positive.
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the tests that follow.

4 An Experiment to Assess Coder Agreement

4.1 Methods and Data

Our method for evaluating misclassification and reliability in the CMP coding procedure was to

perform a simple experiment: to see how much agreement could be obtained by multiple coders

applying the CMP scheme to the same texts. Our experiment employed two texts, both taken from the

“Manifesto Coding Instructions” provided in Appendix II to Klingemann et al. (2006). Apart from

detailed instructions for coders, Appendix II also contains two fully coded sample texts designed to

serve as examples. Using these two texts held several key advantages. First, each text had already

been “officially” parsed into quasi-sentences by the CMP, meaning that we could take the unitization

step as given, and focus in the experiment only on the assignment of codes to each quasi-sentence.

Second, because each text was also officially coded by the CMP, the CMP codings serve as a “gold

standard” for comparing to tester codings. Finally, since these two texts had been chosen for their

clarity and codeability to be instructional examples, they also made good texts for comparing tester

agreement in our experiments.

The first sample text is an extract from the UK The Liberal/SDP Alliance 1983 manifesto. The

text consists of 107 text units coded by the CMP into 19 categories. The second sample text is an

extract from New Zealand National Party 1972 manifesto, containing 72 text units coded by the CMP

into 11 categories. The National Party manifesto text contains only one unique code not present in

The Liberal/SDP Alliance manifesto text. Overall, therefore, our reliability experiment could effec-

tively estimate coder bias and misclassification in relation only to 20 out of 57 available categories,

although these categories were among the most common of those found in most manifestos.

Our test was set up on a dedicated web page containing digitized versions of sample texts, al-

ready divided into quasi-sentences. Each page also contained detailed instructions adapted directly

from from “Manifesto Coding Instructions” in Appendix II to Klingemann et al. (2006). Coders were

asked to select for each text unit an appropriate category from a scroll-down menu. We also collected

some minimal information on coder identifiers and previous experience in coding manifestos. Only

completed manifestos could be submitted into the system. Going for a mix of experience and youth
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we sent out invitations to participate in our experiment to the majority of trained CMP coders7 and a

selection of usual suspects: staff and postgraduates at several European and North American univer-

sities. We ended up with a list of 172 names with active emails who were randomly assigned to one

of the two test documents.

Our response set consisted of 39 coders, but some of these results were discarded. To be as fair

as possible to the CMP, we discarded the bottom fourth of test coders in terms of their reliability,

while dropping none from the top. Overall, the New Zealand manifesto was completed by 12 coders

and the UK manifesto by 17. The coders whose results are reported here had a range of prior expe-

rience with coding manifestos using the CMP scheme. Although we do not focus on the relationship

between coder characteristics and reliability here, it is worth noting that we found no evidence in our

experiments that experienced coders performed more reliabily those with less experience.

4.2 Methods of Assessing Agreement

Previous analysis of inter-coder variation, coder bias, and misclassification can only be character-

ized as limited. The CMP measured the extent to which coder training was successful by correlating

percentages coded into each category by a given trainee with percentages coded into the same cat-

egories in the CMP “gold standard” coding of a test manifesto. Depending on which test we are

talking about, reported correlations range from 0.70 to 0.80. For 23 coders that were trained from the

the second version of coding manual, their average correlation with the “gold standard” was reported

to be 0.83. Of these coders fourteen were new hires taking the test for the first time. Their average

correlation with the master copy is 0.82. Nine coders on the second contract took the test again with

results for this group going up from 0.70 in the first round to 0.85 in the second round (Volkens,

2007, 118). Klingemann et al. (2006, 107) report that coders on another contract retaking the test

showed an average correlation coefficient of 0.88. These reported results are collected in Table 1.

[TABLE 1 ABOUT HERE]

Several serious issues with these reported results become immediately apparent to anyone who

has ever used the CMP data. The key issue in reliability tests taken by the CMP coders is whether

they agree on unitization and categorization of text units with the “gold standard”. There is a clear

distinction, however, between measuring agreement and measuring association. Strong association

7Andrea Volkens has kindly provided us with a list of names of 84 CMP coders of which 60% were matched with email
addresses. We also used publicly available e-mail addresses of coders trained by the CMP for a separate Euromanifestos
Project (see Wüst and Volkens, 2003).
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is required for strong agreement, but the reverse is not true (Agresti, 1996, 243).

The association measure reported by the CMP is the Pearson product-moment correlation that

measures the degree of linear trend between two (at least) ordinal variables: the degree to which

values of one variable predict values of the other variable. Measures of agreement, on the other

hand, gauge the extent to which one variable equals the other. If a coder consistently miscategorizes

quasi-sentence of a particular type, then association with the “gold standard” will be strong even

though the strength of agreement is poor. Moreover, the Pearson product-moment correlations are

not applicable for nominal-level data, which is the case in the analysis of (mis)coding of individual

text units. For these reasons correlations should be avoided since “in content analysis their use is

seriously misleading” Krippendorff (2004, 245).

Another problem with the CMP’s coder reliability data concerns the issue of zero-category in-

flation. As discussed earlier, for any given manifesto only a small subset of the available categories

tend to be used. The test manifesto used by the CMP to assess reliability is no exception, and since

the correlation vectors from the CMP’s reliability are indexed by category, this means a majority of

the elements in the correlation vectors will have zeroes. The effect is to register high correlations

based not on how well coders agree on applicable categories, but how well they agree on categories

that clearly do not apply (such clear agreement on the absence of any EU-category quasi-sentences

in the 1966 New Zealand training document).

Beyond the measures of association there are standard measures of agreement that are used ex-

tensively in the literature on content analysis. One standard measure is Krippendorff’s α, which is

“the most general agreement measure with appropriate reliability interpretations in content analysis”

(Krippendorff, 2004, 221). Outside the content analysis literature by far the most widely used method

of statistical analysis of agreement for categorical variables is the κ measure (Roberts, 2008, 811).8

Hayes and Krippendorff (2007) compare Krippendorff’s α and Fleiss’ κ and suggest that they are

very similar. We also find that in most practical contexts both measures produce essentially identical

coefficients. Both α and κ coefficients have a range from zero (perfect disagreement) to one (perfect

agreement). Both measures also take into account the fact that some agreement may occur purely by

chance.

It should be noted that there are two major issues with applying any measure of agreement and

8The kappa coefficient is measured as κ = po−pe
1−pe

, where po is the overall proportion of observed agreement and pe is
the overall proportion of agreement expected by chance (Fleiss, Levin and Paik, 2003, 605). The kappa coefficient was
proposed by Cohen (1960) and extended to multiple raters by Fleiss (1971).
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association to the CMP reliability results. First, since unitization differs between coders, as it does

+/-10% in the tests reported in Table 1, it is not clear on what, if anything, the coders are supposed

to agree on. Second, coders report only aggregate percentages for each category leaving open the

question whether coders actually agreed on codes applied to individual text units. Only by fixing

the units and analyzing agreement at the category level as in our experiment can true reliability be

assessed, something which our test controls for.

The CMP group prefers to focus on reliability of composite indicators on the basis of their per-

formance within the data set (Klingemann et al., 2006, 107). Reliability results for individual esti-

mates are viewed of limited importance with the emphasis placed on general tendencies and patterns

(Klingemann et al., 2006, 108). Although it has been declared that “the data-set as a whole is re-

liable” (Klingemann et al., 2006, 108), we believe that reliability can only be assessed by data that

is additional to the data whose reliability is in question (Krippendorff, 2004, 212). In the case of

the CMP, this means analyzing reliability data obtained through duplication of coding exercise by

several independent coders.

5 Results of the Coding Experiment

5.1 Inter-coder Agreement

According to Hayes and Krippendorff (2007, 78), reliability “amounts to evaluating whether a coding

instrument, serving as common instructions to different observers of the same set of phenomena,

yields the same data within a tolerable margin of error. The key to reliability is the agreement among

independent observers.” Applied to the CMP, reliability refers to the extent that different coders,

coding the same manifesto independently, are able to agree on the categories to which each quasi-

sentence belongs. In what follows we therefore report the simplest and easiest to test indicator of

the CMP coding’s reliability: how well different test coders agreed with one another when assigning

categories to each quasi-sentence. Note that in assessing this form of reliability, we need make no

reference to the master or “true” coding at all. If we find significant coder disagreement, then we can

directly conclude that misclassification is occurring, since by necessity not every disagreeing coder

can be correctly classifying each text unit.

Perfect reliability is never to be expected, but widely agreed guidelines for interpreting our pri-

mary reliability measure κ hold 0.80 to be the threshold above which a research procedure is con-
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sidered to have an acceptable reliability. In the context of content analysis Krippendorff (2004, 241)

suggests not to rely on variables with reliabilities below κ = 0.80, and to consider variables with

reliabilities between κ = 0.667 and κ = 0.80 only for drawing tentative conclusions.9

[TABLE 2 ABOUT HERE]

The results of our reliability scores from test coder results are summarized in Table 2. The table

reports results for the British manifesto, the New Zealand manifesto, and the two combined. The first

column reports κ for all coders by category. In theory, each quasi-sentence could have been rated by

each coder as belonging to any one of the 56 policy categories or classified as “uncoded”, although

in practice many categories were never used by any coder.

Because each category also plays a role in the definition of the CMP’s centrally important “Rile”

index—being one of the 13 left or 13 right categories, or one of the 31 categories that is neither—

we also compared the “Rile category” assigned by each coder to the quasi-sentences, reported in

the second column (“By RILE”) of Table 2. This allowed us to test whether reliability could be

improved—as expected by the CMP—when only this reduced set of three categories was used. By

this view, two coders assigning “403” and “404” to the same quasi-sentence would be viewed in

perfect agreement, since both of these categories are classified as “left” in the Rile scale.

Finally, for the categories that the CMP’s master coding identified as being present in the test

manifestos, we are also able to report individual κ statistics for the reliability of each category. These

figures are shown in the bottom part of Table 2, indicating how well different coders could agree

on quasi-sentences being designated as specific categories, by category. The results are broadly

consistent with the summary results, although several exceptionally unreliable categories stand out.

From the left side of the “Rile” scale, “202: Democracy Positive” is extremely poor, with κ = 0.18,

as are “701: Labour Groups: Positive” and “Economic Planning: Positive”. On the Right, “605:

Law and Order: Positive” and especially “305: Political Authority: Positive” are flagged by our

experiment as being extremely unreliable. In general, categories identifying broad policy objectives

such as “economic goals” seem to be very highly prone to inter-coder disagreement when it comes

to assigning them to specific text units.

Overall, these results show that regardless of whether coders are compared in the full category

tests or on the reduced three-fold “Rile” classification, rater agreement is exceptionally poor by

9In a slightly more lenient set of guidelines, Fleiss, Levin and Paik (2003, 604) following Landis and Koch (1977) pro-
posed guidelines for interpreting the kappa statistic with values above 0.75 may be taken to represent excellent agreement
beyond chance, values below 0.40 show poor agreement beyond chance, and intermediate values represent fair to good
agreement beyond chance.
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conventional standards: 0.35-.36 for the British manifesto test, and 0.40-0.47 for the New Zealand

test. The RILE test showed no differences for the British text, but was slightly higher in the New

Zealand test. When both sets of results were combined, the results were even lower, at 0.31-0.32.

These figures are undeniable evidence that even after receiving detailed instructions, and even when

at least one-third of our test coders have previous experience with coding manifestos for the CMP,

reliability for the CMP scheme is significantly below conventionally acceptable standards.

5.2 Coder Agreement with the Master

Another way to assess reliability is by comparing the agreement of each coder with the CMP’s master

coding, taking the master coding as a “gold standard” representing the correct set of categories. In-

deed, this is the standard benchmark applied by the CMP in previous tests of reliability (e.g. Volkens,

2007; Klingemann et al., 2006, 107). If the training process has succeeded and coders are suc-

cessfully able to apply the coding scheme to actual text units, then their agreement with the master

coding should be high. Agreement with the master coding can also be taken as a measure of the

errors introduced by the difficulty of the coding scheme.

[FIGURE 1 ABOUT HERE]

The results of our tests were not encouraging. For the British manifesto test, the New Zealand

manifesto test, and combined tests respectively, the median κ test coders’ agreement with the master

were 0.43, 0.54, and 0.46 respectively. The best coder agreed 0.74 with the master, and the worst

0.22. The full results are portrayed in Figure 1. This histogram shows the frequency of different

levels of κ for coder-master agreement from the 17 and 12 coders for the British and New Zealand

texts respectively. The solid black line indicates the median results (0.42 and 0.54) from each test.

For comparison with the conventional minimum level of acceptable reliability, we have also plotted a

dashed line indicating the conventional 0.80 cutoff for acceptable reliability. As can be clearly seen,

the main density of the distribution of results for individual coders was well below standard levels of

reliability, on both test documents.

5.3 Misclassification

Comparing the different coders’ categorizations of the same text units not only allows us to estimate

reliability, but also allows us to characterize precisely the nature of this misclassification. Using the

master codings as an external validation sample, we are able to determine for each “true” category,
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what the probabilities were that test coders would assign a text unit to the correct categories versus

incorrect categories. In the earlier language of or framework for misclassification, we are able to

use the empirical 57× 57 matrix of true versus observed codings to estimate the misclassification

matrix Θ jk. By Equation (3), we know that the size of the off diagonals (or Θ̂− I) will estimate the

difference between the true categories Ai and the observed categories A∗i .

In order to make the misclassification matrix manageable, we have reduced the focus to the prob-

ability that individual categories will be misclassified in terms of the three-fold “Rile” classification.

Looking at misclassification in this way tests the CMP assertion that errors in classification will be

“self-canceling,” and also focuses attention on important errors, such as whether a category that is

really “left” will be classified as one which is considered “right” in the CMP’s “Rile” scale, and

vice-versa. Because the “Rile” index—as are all other quantities in the CMP dataset—are considered

as proportions of all text units, we also consider misclassifications into the “Other” category that is

neither left nor right.

Full misclassification probabilities are reported in the Appendix, for each CMP coding category.

Categories are sorted so that the 13 “Rile-left” categories are listed first, the 13 “Rile-right” categories

second, followed by the “Rile-other” categories. The probability that an individual policy category

will be classified as belonging to its own “Rile” classification are highlighted in boldface. For quasi-

sentences that really belong to “202: Democracy: Positive” for instance—a relative high-frequency

category at 3.55% of all CMP quasi-sentences in the combined dataset—the probability is only 0.50

from our tests that it will be assigned a CMP code that is one of the 13 “Rile-left” categories. The

probability is almost even (0.47) that it will be coded as a category that is not part of the “Rile” index,

and just 0.03 that it will coded as a “Rile-right” category. Similar interpretations can be made for

each of the other CMP coding categories listed in the Appendix. (The limited set of categories in our

test documents meant that we could only report misclassification probabilities for the 22 categories

identified by the CMP’s Master coding.)

[TABLE 3 ABOUT HERE]

Table 3 provides the most reduced summary of this misclassification, according to a 3×3 table.

The coders from our two tests provided a total of 1,668 text unit classifications, which we could

identify from the CMP’s master coding as belonging to a left, right, or neither “Rile” category. Com-

paring these to the Rile categories of the coding category that our testers identified, we see significant

frequencies in the off-diagonal cells. “Left” text units in particular were prone to misclassification, as
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0.35 or 35% of the time these were assigned a category that was not in the “Rile” scale. Conversely,

about 19% of the text units that were not in a category found in the “Rile” scheme were classifies in-

stead as “left”. Overall, the highest diagonal proportion—equivalent to the sensitivity or true positive

rate defined previously—was just .70, indicating that 30% or more of the text units were classified

into a wrong “Rile” category. Put another way, the probability of a “false negative” assignment of the

“other” category is β = (1− .70) = .30. Full sensitivities on a category-by-category basis are listed

in the Appendix (represented by the bold figures equivalent to the bold diagonals from Table 3). The

results across the board are very discouraging. Some categories in the test had abysmally high false

negative rates, such as .82 for 404: Economic Planning Positive, and .56 for 305: Political Authority

Positive. Coders were also extremely unlikely to declare a text unit “uncoded” when according to the

gold standard it was in fact uncoded (β = .55). But even better-performing categories typically failed

to reach levels at which by most accepted standards we would be willing to accept the risk of false

negatives: Only three categories from those tested reached levels of β ≤ .20. The conclusion from

these tests is quite clear: Even the better group of coders from our tests, including those trained and

retrained by the CMP itself, are unable to apply the coding instructions to the training texts without

a degree of misclassification that would be considered unacceptable by any conventional standard.

[FIGURE 2 ABOUT HERE]

A graphical summary of the misclassification probabilities (presented in the Appendix) is to use

a ternary plot. This method also clearly singles out visually the worst categories from the standpoint

of misclassification. Figure 2 plots each category according to its probability of (mis)classification

into the three-fold Rile set of Left, Right, or Other. The categories that are truly left are in plotted by

their numeric category identifiers in normal typeface. Those that are truly right are in bold type, and

those that are neither are in italics. In addition, the mean misclassification probabilities for each of

the three categories are shown as labelled points with a circle (these correspond to the proportions in

Table 3.)10 If no misclassification existed, then all categories of the same color would be clustered

in the corners of the triangle, which as can be clearly seen does not happen. Some categories almost

equally split between two of the Rile categories, such as “truly left” categories 701 and 202, which

are are almost equally likely to be coded as Other, although these were almost never miscoded as

Right. Yet other categories suffer from even more severe misclassification, in particular categories

10Locating plot coordinates on a ternary plot begins with moving from the corner marked “0” toward the corner marked
“1”, and using the ruled lines at 60 degrees left to read the value for that side. For category 402, for instance, the probability
of it being coded “left” is .2. Reading from the bottom side, the probability of coding category 402 as “Other” is just under
.10. Finally, reading from the right side, the probability of 403 being coded as “Right” is just above .7.
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305 (truly “right”) and 404 (truly “left”). Located towards the middle of the triangle, these categories

are not only severely prone to misclassification, but also their misclassification occurs to either of the

two “wrong” right-left categories. Taken as a whole, these results are compelling evidence against the

notion that coding mistakes tend to wash out when aggregated into left-right (or “Rile”) categories.

6 Demonstrating the Effects of Misclassification

We know from just the reduced 3× 3 “Rile” misclassification matrix (estimated in Table 3) that

the probabilities of misclassification into the wrong overall left-right categories are quite high. The

question for practical purposes is: just how badly will this affect our resulting estimates?

To answer this question we use simulation of the type of misclassification identified in our results

above. By simulating the effect of stochastic misclassification on a range of “Rile” values at different

levels of reliability, we can assess the degree of error, both systematic and non-systematic, that are

likely to be present in the CMP’s reported Rile estimates. From the combined CMP dataset, we know

that the population proportions of the “Rile” left, right, and neither text units are roughly 0.25, 0.25,

and 0.50 respectively. Our range of “Rile” therefore fixes the other category at 0.50 and lets the other

frequencies vary so that we can observe “Rile” values from -50 to +50, once again a range taken from

the empirical range in the combined CMP dataset.11

[FIGURE 3 ABOUT HERE]

The results of simulated misclassification are shown in Figure 3. Here we have manually manip-

ulated the misclassification matrix to be symmetric and to produce reliabilities of (reading from top

left to right) κ = 0.90, 0.80, 0.70, 0.60, and 0.50. The last panel (lower left) shows the effect of sim-

ulating error using the misclassification probabilities from Table 3, and having a median reliability

of 0.47. A faint cross-hair indicates the origin, and a dashed line shows the identity point at which

A∗i = Ai.

Two patterns clearly emerge from our simulation of misclassification. First, even at relatively

high levels of reliability, misclassification adds significant noise to the resulting Rile estimates, mean-

ing that any individual realization of the Rile index is likely to contain a significant degree of random

error. Because “Rile” is most commonly used as an explanatory variable in political science model—

in fact this is the single most common usage of the CMP dataset by far—this means that such models

11Simulations here were performed 8 times each for even-valued “true” Rile values ranging from -50 to 50. Misclas-
sification was generated using the misclass() function from the R simex 1.2 package. A tiny amount of jitter has been
added to the x-axis values in the plots.
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are likely to have biased estimates (for a fuller discussion see Benoit, Laver and Mikhaylov, 2009).

Second, all of the results tilt the observed values away from the identity line, making it flatter, and

causing a centrist bias in the estimated Rile values even when the misclassification matrix is strictly

symmetric. The reason is quite general: the more the true value consists of any single category,

the greater the tendency of misclassification to dilute this category. (At the extreme of being, for

instance, pure left, any misclassification can only move the estimate away from this extreme.) At the

levels of reliability indicated by our tests—call it 0.50—this bias is quite severe, cutting the estimate

of a “true” Rile value of -50 or 50 almost in half. The effect on estimates when Rile is used as an

explanatory variables is to compact the range of the variable, further afflicting regression coefficients

with attenuation bias. In the last plot, with asymmetic error, we have used the actual misclassifica-

tion matrix to simulate the error, leading to a shift to the right in the coded texts of between 20 and

10 points. This occurs because the misclassification tends to over-classify texts as “right”, leading

to a systematic bias towards the right as well as to the general attenuation bias caused simply by

unreliable human coding.

7 Conclusions

We know with absolute certainty, from information published by the CMP itself and summarized

in Table 1, that CMP coders disagree with CMP master codings when assigning text units to CMP

coding categories. Since different coders all have different correlations with the CMP master codings,

we also know with absolute certainty that different CMP coders disagree with each other when coding

the master documents. In this paper, we characterize this disagreement as stochastic coding error

and set out to derive estimates of the scale of this. This is crucially important since each point in

the widely used CMP time series is based on a single coding by a human coder and comes with

no estimate of associated error. Before we can draw statistically valid inferences from these data,

however, we need estimates of the error associated with their generation.

Table 2 summarizes our findings on the broad scope of the stochastic error arising from multiple

independent human interpretative codings of the master documents. Bearing in mind that the min-

imum standard conventionally deemed acceptable for the reliability coefficients reported in Table 2

is 0.8, the coefficients we find are worryingly low, almost all in the range [0.3, 0.5]. From this we

infer that, had multiple independent human coders indeed been used to code every document in the

CMP dataset, then the inter-reliability of these codings would be unacceptably low. While this has
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previously been suspected on common sense grounds, it has not previously been demonstrated in a

systematic way by analyzing multiple codings of the same document using the CMP coding scheme.

Furthermore, our experiments showed that coders with prior experience with manifesto coding do

not perform better than novices.

We also found that some categories in the CMP scheme are much more susceptible to coding error

than others. Findings on this are summarized in Figure 2 and given in more detail in the Appendix.

We see for example that CMP coding categories “305: Political authority” and “404: economic

planning: positive” generate coding errors on a very frequent basis. More worryingly for users of the

CMP left right scale, they often generate coding errors that assign text units “master coded” as right

(305) or left (404) to a coding category on the “wrong” side of the left right scale. This in turn means

that problems arising from coding error are not solved by using the CMP’s aggregate “left” and

“right” categories, or the additive scale constructed from these. Text that should not be assigned to

any category, in other words text that the gold standard declared “uncodeable”, was also more likely

than not to be wrongly assigned a policy category. In fact, the results of our coding experiment, using

the best group of coders from our sample and working with well-known test documents, show that

not only did the coding process fail to meet conventionally acceptable standards of reliability, but

also fails for almost every category to meet acceptable risk levels for misclassification error.

In addition to biasing the estimates of text proportions, misclassification will also add consid-

erable noise to the CMP estimates, substantially more than estimated to arise from either the text

generation process (described in Benoit, Laver and Mikhaylov, 2009) or of coder differences in

unitization, estimated at +/-10%. In addition, the coder misclassification, by coding as “left” what

should be “right” and vice versa, causes a centrist bias as a result of which extreme positions tend to

be coded as more centrist than they “really” are. The additional noise, plus the bias caused by mis-

classifications towards the middle, are likely to cause additional attenuation bias of estimated causal

effects when CMP quantities, especially “Rile”, are used as covariates in regression models.

The coding experiments we report above strongly reinforce the conclusion that the CMP data,

based on human interpretative coding of party manifestos, are very unreliable because they are highly

prone to misclassification by human coders, even trained and experienced coders. Given the central

importance of the CMP estimates to cross-national comparative research, our findings strongly indi-

cate the need for further systematic work on this important matter. Here, our study has been limited

in scope since it is based on limited multiple codings of only two English-language manifestos. We
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used the master documents coded by the CMP in this limited exercise because we wanted to have

some sense of how the multiple codings we generated compare with the CMP’s own view of the

“true and certain” position of each document. What is clearly now indicated, however, is a project

that would procure multiple independent codings of a much larger sample of CMP documents, for

which no master coding exists, to allow more confident conclusions to be drawn about the extent of

unsystematic inter-coder (un)reliability and the biasing effects of systematic coder misclassification.

The work we report above establishes a strong prima facie case that this is a problem to be taken very

seriously indeed by third-party users of the CMP’s estimates of time-series of party policy positions.
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Test description Mean Correlation N Reference

Training coders’ solutions with master 0.72 39 Volkens (2001a, 39)
Training coders’ second attempt with master 0.88 9 MPP2 (2006, 107)
All pairs of coders 0.71 39 Volkens (2001a, 39)
Coders trained on 2nd edition of manual 0.83 23 Volkens (2007, 118)
First time coders 0.82 14 Volkens (2007, 118)
First test of coders taking second contract 0.70 9 Volkens (2007, 118)
Second test of coders taking second contract 0.85 9 Volkens (2007, 118)

Table 1: Coder reliability test results reported by CMP. Sources are (Klingemann et al. 2006; Volkens
2001a, 2007); figures reported are Pearson’s R for the aggregate percentage measured across 56
coding categories for the test document found in MPP2, pp181–186.
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Fleiss’s κ

Reliability Test By Category By RILE

British Manifesto Test 0.35 0.36
(107 text units, 17 coders)

New Zealand Manifesto Test 0.40 0.47
(72 text units, 12 coders)

Combined Manifestos Test Results 0.31 0.32
(144 text units, 24 coders)

Combined Manifestos Test Results by Category:
504: Welfare State Expansion: Positive (L) 0.50
506: Education Expansion: Positive (L) 0.46
403: Market Regulation: Positive (L) 0.29
202: Democracy: Positive (L) 0.18
701: Labour Groups: Positive (L) 0.14
404: Economic Planning: Positive (L) 0.05
402: Incentives: Positive (R) 0.46
414: Economic Orthodoxy: Positive (R) 0.46
606: Social Harmony: Positive (R) 0.44
605: Law and Order: Positive (R) 0.13
305: Political Authority: Positive (R) 0.10
703: Farmers: Positive 0.82
503: Social Justice: Positive 0.35
411: Technology and Infrastructure: Positive 0.34
706: Non-economic Demographic Groups: Positive 0.29
405: Corporatism: Positive 0.21
410: Productivity: Positive 0.17
408: Economic Goals 0.13
000: Uncoded 0.11
303: Govt’l and Admin. Efficiency: Positive 0.02

Table 2: Reliability Results from Coder Tests. The (L) or (R) desginates whether a CMP category
was part of the “Rile” left or right definition, respectively.
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True Rile Category Total
Left Right None

Left 430 100 188 718
0.59 0.11 0.19

Coded Right 41 650 115 806
Rile 0.06 0.69 0.11

None 254 193 712 1,159
0.35 0.20 0.70

Total 725 943 1,015 1,668

“False negative” rate .41 .31 .30
“False positive” rate .15 .09 .27

Table 3: Misclassification matrix for true versus observed Rile. The top figure in each cell is the
raw count; the bottom figure is the column proportion. The figures are empirically computed from
combined British and New Zealand manifesto tests. The false negative rate is 1−sensitivity, while
the false positive rate is 1−specificity.
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Figure 1: Summary of Coder Reliabilities Compared to Master, Cohen’s κ. The dashed red line indi-
cates the conventional lower bound as to what is considered “reliable” in interpretations of Cohen’s
κ. The solid black lines are the median value of κ from all the coders completing the tests.
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Figure 2: Misclassification into Left, Right, or Other by coding category, from experiments. The dark
circles in hollow points represent the misclassification for the 3×3 left-right-other misclassification
matrix. Each number plotted identifies the probability of this category being coded as a left, right,
or other category, where the red numbers are really left, the blue numbers really right, and the gray
numbers really other categories. If no misclassification existed, all numbers would cluster together
into their respective corners, which clearly does not happen.
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Figure 3: Simulated Misclassification at Different Levels of κ. The misclassification matrix Θ ji is
simulated from a manifesto with 50% uncoded content, for different levels of κ, except for the last
panel, which uses Θ̂ ji estimated from the coding experiments. Misclassification is simulated 8 times
for each even-numbered true “Rile” score from -50 to 50.

31



APPENDIX: Complete Category Listing.
Detailed information on categories, reliability, and classification probabilities from tests.

Overall Fleiss κ Pr(A∗ |A) =
Code Description % RILE All RILE Left Right Other

103 Anti-Imperialism: Positive 0.38 L
105 Military: Negative 0.77 L
106 Peace: Positive 0.82 L
107 Internationalism: Positive 2.79 L
202 Democracy: Positive 3.55 L 0.18 0.07 0.50 0.03 0.47
403 Market Regulation: Positive 2.04 L 0.29 -0.03 0.75 0.12 0.14
404 Economic Planning: Positive 0.97 L 0.05 -0.05 0.18 0.35 0.47
406 Protectionism: Positive 0.26 L
412 Controlled Economy: Positive 0.71 L
413 Nationalization: Positive 0.41 L
504 Welfare State Expansion: Positive 7.19 L 0.50 0.10 0.68 0.03 0.29
506 Education Expansion: Positive 4.44 L 0.46 n/a 0.78 0.00 0.22
701 Labour Groups: Positive 2.51 L 0.14 0.05 0.45 0.08 0.47
104 Military: Positive 1.32 R
201 Freedom and Human Rights: Positive 2.56 R
203 Constitutionalism: Positve 0.59 R
305 Political Authority: Positive 3.00 R 0.10 0.14 0.24 0.44 0.32
401 Free Enterprise: Positive 1.74 R
402 Incentives: Positive 2.29 R 0.46 0.03 0.20 0.74 0.06
407 Protectionism: Negative 0.21 R
414 Economic Orthodoxy: Positive 1.91 R 0.46 0.16 0.02 0.77 0.20
505 Welfare State Limitation: Positive 0.36 R
601 National Way of Life: Positive 1.03 R
603 Traditional Morality: Positive 1.41 R
605 Law and Order: Positive 2.46 R 0.13 n/a 0.00 0.82 0.18
606 Social Harmony: Positive 1.44 R 0.44 0.24 0.03 0.71 0.26
101 Foreign Special relationships: Positive 0.77 -
102 Foreign Special relationships: Negative 0.22 -
108 European Integration: Positive 1.92 -
109 Internationalism: Negative 0.40 -
110 European Integration: Negative 0.43 -
204 Constitutionalism: Negative 0.23 -
301 Decentralization: Positive 3.19 -
302 Centalization: Positive 0.16 -
303 Governmenatal and Administrative Efficiency: Positive 4.60 - 0.02 n/a 0.47 0.00 0.53
304 Political Corruption: Negative 0.80 -
405 Corporatism: Positive 0.27 - 0.21 n/a 0.25 0.00 0.75
408 Economic Goals 2.90 - 0.13 0.02 0.16 0.16 0.68
409 Keynesian Demand Management: Positive 0.19 -
410 Productivity: Positive 2.14 - 0.17 0.12 0.01 0.16 0.83
411 Technology and Infrastructure: Positive 5.71 - 0.34 0.29 0.41 0.05 0.54
415 Marxist Analysis: Positive 0.09 -
416 Anti-Growth Economy: Positive 0.69 -
501 Environmental Protection: Positive 4.85 -
502 Culture: Positive 3.04 -
503 Social Justice: Positive 3.83 - 0.35 0.24 0.12 0.10 0.78
507 Education Limitation: Positive 0.04 -
602 National Way of Life: Negative 0.21 -
604 Traditional Morality: Negative 0.29 -
607 Multiculturalism: Positive 0.80 -
608 Multiculturalism: Negative 0.22 -
702 Labour Groups: Negative 0.12 -
703 Farmers: Positive 3.41 - 0.82 0.04 0.03 0.09 0.88
704 Middle Class and Professional Groups: Positive 0.86 -
705 Underprivileged Minority Groups: Positive 1.44 -
706 Non-economic Demographic Groups: Positive 4.20 - 0.29 0.11 0.17 0.08 0.75
000 Uncoded 4.79 - 0.11 0.10 0.41 0.14 0.45

Note: The “Overall % column refers to the proportion of coded quasi-sentences assigned to each
category from the complete CMP dataset (from MPP2).
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