
Collecting Social Media Data

Two different methods:

1. Screen scraping: extract data from source code of website

2. Web APIs (application programming interface): use a set of
structured https requests that return JSON or XML files

Types of APIs:

1. RESTful APIs: queries for static information in current
moment (e.g. user profiles, posts, etc.)

2. Streaming APIs: changes in users’ data in real time (e.g. new
messages, deletions, etc.)

Rate limits

1. Restrictions on number of API calls by user and period of time

2. APIs are expensive!



Collecting Social Media Data

Two different methods:

1. Screen scraping: extract data from source code of website

2. Web APIs (application programming interface): use a set of
structured https requests that return JSON or XML files

Types of APIs:

1. RESTful APIs: queries for static information in current
moment (e.g. user profiles, posts, etc.)

2. Streaming APIs: changes in users’ data in real time (e.g. new
messages, deletions, etc.)

Rate limits

1. Restrictions on number of API calls by user and period of time

2. APIs are expensive!



Collecting Social Media Data

Two different methods:

1. Screen scraping: extract data from source code of website

2. Web APIs (application programming interface): use a set of
structured https requests that return JSON or XML files

Types of APIs:

1. RESTful APIs: queries for static information in current
moment (e.g. user profiles, posts, etc.)

2. Streaming APIs: changes in users’ data in real time (e.g. new
messages, deletions, etc.)

Rate limits

1. Restrictions on number of API calls by user and period of time

2. APIs are expensive!



Connecting with an API

Constructing a REST API call

I Baseline URL: http://graph.facebook.com/

I Parameters: ?ids=barackobama,johnmccain

Response often in JSON format. (example)

Authentication

I Most common is an open standard called OAuth

I Connections without sharing username and password, only
temporary tokens that can be refreshed

I httr package in R implements most cases (examples)

http://graph.facebook.com/?ids=barackobama,johnmccain
https://github.com/hadley/httr/tree/master/demo


Connecting with an API

Constructing a REST API call

I Baseline URL: http://graph.facebook.com/

I Parameters: ?ids=barackobama,johnmccain

Response often in JSON format. (example)

Authentication

I Most common is an open standard called OAuth

I Connections without sharing username and password, only
temporary tokens that can be refreshed

I httr package in R implements most cases (examples)

http://graph.facebook.com/?ids=barackobama,johnmccain
https://github.com/hadley/httr/tree/master/demo


Connecting with an API

Constructing a REST API call

I Baseline URL: http://graph.facebook.com/

I Parameters: ?ids=barackobama,johnmccain

Response often in JSON format. (example)

Authentication

I Most common is an open standard called OAuth

I Connections without sharing username and password, only
temporary tokens that can be refreshed

I httr package in R implements most cases (examples)

http://graph.facebook.com/?ids=barackobama,johnmccain
https://github.com/hadley/httr/tree/master/demo


Twitter and Facebook

R packages

I Twitter: twitteR for REST, streamR for Streaming

I Facebook: Rfacebook

Python: tweepy and facebook-sdk

Open-source code released by SMaPP lab (GitHUB)

Integration with quanteda



Twitter and Facebook

R packages

I Twitter: twitteR for REST, streamR for Streaming

I Facebook: Rfacebook

Python: tweepy and facebook-sdk

Open-source code released by SMaPP lab (GitHUB)

Integration with quanteda



Twitter and Facebook

R packages

I Twitter: twitteR for REST, streamR for Streaming

I Facebook: Rfacebook

Python: tweepy and facebook-sdk

Open-source code released by SMaPP lab (GitHUB)

Integration with quanteda



Twitter and Facebook

R packages

I Twitter: twitteR for REST, streamR for Streaming

I Facebook: Rfacebook

Python: tweepy and facebook-sdk

Open-source code released by SMaPP lab (GitHUB)

Integration with quanteda


