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Reliability

I Each overall error consists of the two error components ζj and εij :

ξij ≡ ζj + εij

I The error components are independent, so it can be shown that the
total variance is the sum of the between-subject and within-subject
variances:

Var(yij) = Var(β + ζj + εij)

= Var(β) + Var(ζj + εij)

= (0) + ψ + θ

I We can express the proportion of the total variance that is between
subjects as:

ρ =
Var(ζj)

Var(yij)
=

ψ

ψ + θ

I ρ can also be thought of as reliability of measurements for the same
subjects j . It is also analogous to R2 in that it represents the
proportion of the total variance that is “explained” by subjects



Intraclass correlation

I ρ can also be interpreted as the marginal correlation between
measurements on two occasions i and i ′ for the same subject

I So ρ aso represents within-cluster correlation

I We estimate the ICC using parameter estimates for ψ and θ:

ρ̂ =
ψ̂

ψ̂ + θ̂

I Can contrast the ICC with Pearson’s r as:

r =
1

J−1

∑J
j=1(yij − ȳi·)(yi ′j − ȳi ′·)

syi syi′

I Pearson’s r provides a measure of relative agreement, based on
deviations of each i from their respective means

I ICC provides a measure of absolute agreement – and is therefore
affected by linear transformations of the measurements



Fixed v. random effects

I The model we have called “random intercepts” is also a
one-way random-effects ANOVA model, written as:

yij = β + ζj + εij εij |ζj ∼ N(0, θ) ζj ∼ N(0, ψ)

where ζj is a random intercept

I An alternative is the one-way fixed-effects ANOVA model:

yij = β + αj + εij εij ∼ N(0, θ)
J∑

j=1

αj = 0

where αj is an unknown cluster-specific parameter



Fixed v. random effects: which to choose?

I Question: are we concerned about the population of clusters,
or instead the particular clusters in the sample?

I If we are interested in the variance ψ for the population of
clusters, or inference for β when clusters and units are sampled
from respective population, then use a random effects approach

I If we are interested in the sample-specific “effects” αj and
inferences regarding β only when units (and not clusters) are
considered randomly sampled, then use a fixed effects approach

I The choice mostly affects the standard error of β̂ but also can
affect β̂ itself



Stata example using HSB data (xtreg)
. xtreg mathach, i(schoolid) mle nolog

Random-effects ML regression Number of obs = 7185

Group variable: schoolid Number of groups = 160

Random effects u_i ~ Gaussian Obs per group: min = 14

avg = 44.9

max = 67

Wald chi2(0) = 0.00

Log likelihood = -23557.905 Prob > chi2 = .

------------------------------------------------------------------------------

mathach | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

_cons | 12.63707 .2436216 51.87 0.000 12.15958 13.11456

-------------+----------------------------------------------------------------

/sigma_u | 2.924631 .1826925 2.587612 3.305544

/sigma_e | 6.256868 .0527937 6.154245 6.361202

rho | .1793109 .0185934 .1452078 .2180551

------------------------------------------------------------------------------

Likelihood-ratio test of sigma_u=0: chibar2(01)= 983.92 Prob>=chibar2 = 0.000

cons overall population mean β̂: 12.63707

/sigma u between-subject standard deviation

q
ψ̂ of ζj : 2.924631

/sigma e within-subject SD
p
θ̂: 6.256868

rho intraclass correlation ρ, also computed as:

ρ̂ =
ψ̂

ψ̂ + θ̂
=

2.922

6.262 + 2.922
= .18



Stata example using HSB data (xtmixed)

. xtmixed mathach || schoolid:, mle nolog

Mixed-effects ML regression Number of obs = 7185

Group variable: schoolid Number of groups = 160

Obs per group: min = 14

avg = 44.9

max = 67

Wald chi2(0) = .

Log likelihood = -23557.905 Prob > chi2 = .

------------------------------------------------------------------------------

mathach | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

_cons | 12.63707 .2436173 51.87 0.000 12.15959 13.11455

------------------------------------------------------------------------------

------------------------------------------------------------------------------

Random-effects Parameters | Estimate Std. Err. [95% Conf. Interval]

-----------------------------+------------------------------------------------

schoolid: Identity |

sd(_cons) | 2.924632 .1826955 2.587608 3.305552

-----------------------------+------------------------------------------------

sd(Residual) | 6.256868 .0527937 6.154245 6.361202

------------------------------------------------------------------------------

LR test vs. linear regression: chibar2(01) = 983.92 Prob >= chibar2 = 0.0000



Day 3 focus: random intercept models

I One way to look at this is that we are reparameterizing β
from the models introduced earlier, by adding explanatory
variables X (covariates)

I This allows us to model directly the distinction between the
effects of X that are within-cluster from those that are
between-cluster

I Another way to look at it: we are extending the CLRM by
adding random intercepts ζj

I We also discuss the measures of variation explained by X , and
the coefficients of determination (R2 equivalents) for random
intercept models



Sample variances at different levels

I Overall standard deviation measured in deviations from overall
mean x̄··:

s2
xO =

1

N − 1

J∑
j=1

nj∑
i=1

(xij − x̄··)
2

I Between standard deviation measured in deviations of cluster
(level 2) means x̄·j from overall means:

s2
xB =

1

J − 1

J∑
j=1

(x̄·j − x̄··)
2

I Within standard deviation measured in deviations of
observations (level 1) xij from the cluster means:

s2
xW =

1

N − 1

J∑
j=1

nj∑
i=1

(xij − x̄·j)
2



Example using HSB dataset

. use http://www.stata-press.com/data/mlmus2/hsb.dta, clear

. xtsum mathach ses sector, i(schoolid)

Variable | Mean Std. Dev. Min Max | Observations

-----------------+--------------------------------------------+----------------

mathach overall | 12.74785 6.878246 -2.832 24.993 | N = 7185

between | 3.117651 4.239781 19.71914 | n = 160

within | 6.186706 -6.926784 30.71674 | T-bar = 44.9063

| |

ses overall | .0001434 .7793552 -3.758 2.692 | N = 7185

between | .4139706 -1.193946 .8249825 | n = 160

within | .660588 -3.650597 2.856222 | T-bar = 44.9063

| |

sector overall | .4931106 .4999873 0 1 | N = 7185

between | .4976359 0 1 | n = 160

within | 0 .4931106 .4931106 | T-bar = 44.9063

I T-bar is the mean number of students per school (measured for
each variable – same here because no missing)

I No within variance for sector because this is a level-2 only variable



Specification for random-intercept model

I Standard CLRM model with covariates:

yij = β1 + β2x2ij + · · ·+ βpxpij + ξij

I Error term: ξij ≡ ζj + εij
I Linear random-intercept model with covariates:

yij = β1 + β2x2ij + · · ·+ βpxpij + ζj + εij

= (β1 + ζj) + β2x2ij + · · ·+ βpxpij + εij

I Error assumptions (exogeneity):

ζj |xij ∼ N(0, ψ)

and
εij |xij , ζj ∼ N(0, θ)



Illustration of random intercept model for one J group



Smoking and birth weight example from text: xtreg



Smoking and birth weight example from text: xtmixed



Smoking and birth weight example from text: results
compared



Measures of fit for random intercept models

I Consider a null model without covariates, compared to a model with
covariates

I The R2 with OLS is the proportional reduction in variance from
using the covariates model versus the null model:

R2 =
σ̂2

0 − σ̂2
1

σ̂2
0

I Snijders and Bosker (1999) propose a similar measures for the linear
random-intercept model:

R2 =
ψ̂0 + θ̂0 − (ψ̂0 + θ̂0)

ψ̂0 + θ̂0

I From the smoking and birthweight example (see earlier table):


