Day 9: Topic Models

Kenneth Benoit

Essex Summer School 2014

July 31, 2014

Latent Dirichlet Allocation

- LDA provides a generative model that describes how the documents in a dataset were created
- Each document is a collection of words, generated according to a multinomial distribution, one for each of K topics
- So the process is, roughly:
 - 1. Choose a number of topics
 - 2. Choose a distribution of topics, and create a document from this distribution
 - 3. For each topic, generate words according to a distribution specific to that topic
- The goal of inference in LDA is to discover the topics from the collection of documents, and to estimate the relationship of words to these

Uses and applications

- Topic models are algorithms for discovering the main themes that pervade a large and otherwise unstructured collection of documents
- Can be used to organize the collection according to the discovered themes
- Topic modeling algorithms can be applied to massive collections of documents
- Topic modeling algorithms can be adapted to many kinds of data. among other applications, they have been used to find patterns in genetic data, images, and social networks

Latent Dirichlet Allocation: Details

- Consider we have D (1) documents conisting of V (J) words each
- Assume we know that there are K topics in our corpus. Each topic describes a *multinomial* distribution over the V words, where β_k is the multinomial distribution over the words for topic k.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Latent Dirichlet Allocation: Details

- ► For each document, the LDA generative process is:
 - 1. randomly choose a distribution over topics (a multinomial of length K)
 - 2. for each word in the document
 - 2.1 Probabilistically draw one of the K topics from the distribution over topics obtained in (a), say topic β_k (each document contains topics in different proportions)
 - 2.2 Probabilistically draw one of the V words from β_k (each individual word in the document is drawn from one of the K topics in proportion to the document's distribution over topics as determined in previous step)
- The goal of inference in LDA is to discover the topics from the collection of documents, and to estimate the relationship of words to these, assuming this generative process

More formal description of LDA

For each document:

- 1. draw a topic distribution, $\theta_d \sim \text{Dir}(\alpha)$, where $\text{Dir}(\cdot)$ is a draw from a uniform Dirichlet distribution with scaling parameter α
- 2. for each word in the document:
 - 2.1 Draw a specific topic $z_{d,n} \sim \text{multi}(\theta_d)$ where $\text{multi}(\cdot)$ is a multinomial

2.2 Draw a word $w_{d,n} \sim \beta_{z_{d,n}}$

Illustration of the LDA generative process

Figure 2. Illustration of the generative process and the problem of statistical inference underlying topic models

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

(from Steyvers and Griffiths 2007)

Topics example

Topic 247		Topic 5		Topic 43	Topic 56		
word	prob.	word	prob.	word	prob.	word	prob.
DRUGS	.069	RED	.202	MIND	.081 DO	CTOR	.074
DRUG	.060	BLUE	.099	THOUGHT	.066	DR.	.063
MEDICINE	.027	GREEN	.096	REMEMBER	.064 PAT	TIENT	.061
EFFECTS	.026	YELLOW	.073	MEMORY	.037 HOSI	PITAL	.049
BODY	.023	WHITE	.048	THINKING	.030	CARE	.046
MEDICINES	.019	COLOR	.048	PROFESSOR	.028 MEI	DICAL	.042
PAIN	.016	BRIGHT	.030	FELT	.025 N	URSE	.031
PERSON	.016	COLORS	.029	REMEMBERED	.022 PATI	ENTS	.029
MARIJUANA	.014	ORANGE	.027	THOUGHTS	.020 DOC	TORS	.028
LABEL	.012	BROWN	.027	FORGOTTEN	.020 HE	ALTH	.025
ALCOHOL	.012	PINK	.017	MOMENT	.020 MED	ICINE	.017
DANGEROUS	.011	LOOK	.017	THINK	.019 NUF	SING	.017
ABUSE	.009	BLACK	.016	THING	.016 DE	NTAL	.015
EFFECT	.009	PURPLE	.015	WONDER	.014 NU	RSES	.013
KNOWN	.008	CROSS	.011	FORGET	.012 PHYSI	CIAN	.012
PILLS	.008	COLORED	.009	RECALL	.012 HOSPI	TALS	.011

Figure 1. An illustration of four (out of 300) topics extracted from the TASA corpus.

(from Steyvers and Griffiths 2007)

Often K is quite large!

Probablistic Topic Models

- Consider P(z) as the distribution over topics z in a particular document and and P(w|z) as the probability distribution over words w given topic z.
- ► Each word *w_i* in a document (where the index refers to the *i*th word token) is generated by first sampling a topic from the topic distribution, then choosing a word from the topic-word distribution
- ► P(z_i = j) is the probability that the kth topic was sampled for the *i*th word token
- $P(w_i|z_i = k)$ is the probability of word w_i under topic k
- *K* is the number of topics
- Then

$$P(w_i) = \sum_{k=1}^{K} P(w_i | z_i = k) P(z_i = k)$$

Elements of the model

- Let φ^(k) = P(w|z = k) refer to the multinomial distribution over words for topic k
- → θ^(d) = P(z) refers to the multinomial distribution over topics
 for document d
- ▶ Text collection consists of *D* documents and each document *d* consists of N_d word tokens, with $N = \sum N_d$ (the total tokens in the document collection)

- $\blacktriangleright \phi$ which words are important for which topic
- \blacktriangleright θ which topics are important for a particular document
- z_i is the assignment of word tokens to topics

Graphical model for LDA using plate notation

Interpreting a plate model:

- shaded variables are observed, unshaded are latent
- the hyperparameters α and β are treated as constants in the model (these are parameters of the Dirichlet distribution)
- arrows indicate conditional dependencies between variables
- plates (boxes) are repetitions of sampling steps, with the lower right corner variable indicating the number of samples

Estimation and the "Dirichlet" part

- The Dirichlet is the conjugate prior distribution for the multinomial, and is used in the Bayesian inference required to estimate these parameters
- Estimation is performed using (collapsed) Gibbs sampling and/or variational Expectation-Maximization
- (for us) Implemented in the lda library and can be used with quanteda dfm objects

Challenges in applying LDA

- How many topics (K)?
- How to interpret (label) the topics?
- Should we expect all topics to make sense?
- Some models are complicated and expensive to estimate

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <