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Today's Road Map

The Naive Bayes Classifier

The k-Nearest Neighbour Classifier

Support Vector Machines (SVMs)

Assessing the reliability of a training set
Evaluating classification: Precision and recall

Lab session: Classifying Text Using quanteda



THE NAIVE BAYES CLASSIFIER



Prior probabilities and updating

A test is devised to automatically flag racist news stories.
» 1% of news stories in general have racist messages
» 80% of racist news stories will be flagged by the test

» 10% of non-racist stories will also be flagged

We run the test on a new news story, and it is flagged as racist.

Question: What is probability that the story is actually racist?

Any guesses?



Prior probabilities and updating

What about without the test?

» Imagine we run 1,000 news stories through the test
» We expect that 10 will be racist

v

v

With the test, we expect:
» Of the 10 found to be racist, 8 should be flagged as racist
» Of the 990 non-racist stories, 99 will be wrongly flagged as
racist
» That's a total of 107 stories flagged as racist

v

So: the updated probability of a story being racist, conditional
on being flagged as racist, is 1—27 = 0.075

The prior probability of 0.01 is updated to only 0.075 by the
positive test result

v



This is an example of Bayes' Rule:

P(R = 1|T = 1) = PU=UR=UP(R=D)

= P(T=1)



Multinomial Bayes model of Class given a Word

Consider J word types distributed across / documents, each
assigned one of K classes.

At the word level, Bayes Theorem tells us that:

P(wj|ck)P(ck)

P(cklw)) = P(w)

For two classes, this can be expressed as

P(wjl|ck)P(ck)

= Pwla)P(a) + P(wles)Ple ) ()




Classification as a goal

» Machine learning focuses on identifying classes
(classification), while social science is typically interested in
locating things on latent traits (scaling)

» One of the simplest and most robust classification methods is
the “Naive Bayes" (NB) classifier, built on a Bayesian
probability model

» The class predictions for a collection of words from NB are
great for classification, but useless for scaling

» But intermediate steps from NB turn out to be excellent for
scaling purposes, and identical to Laver, Benoit and Garry's
“Wordscores”

» Applying lessons from machine to learning to supervised
scaling, we can

> Apply classification methods to scaling
» improve it using lessons from machine learning



Supervised v. unsupervised methods compared

» The goal (in text analysis) is to differentiate documents from
one another, treating them as “bags of words”"
» Different approaches:
» Supervised methods require a training set that exmplify
constrasting classes, identified by the researcher
» Unsupervised methods scale documents based on patterns of
similarity from the term-document matrix, without requiring a
training step
» Relative advantage of supervised methods:
You already know the dimension being scaled, because you set
it in the training stage

» Relative disadvantage of supervised methods:
You must already know the dimension being scaled, because
you have to feed it good sample documents in the training
stage



Supervised v. unsupervised methods: Examples

» General examples:
» Supervised: Naive Bayes, k-Nearest Neighbor, Support Vector
Machines (SVM)
» Unsupervised: correspondence analysis, IRT models, factor
analytic approaches
» Political science applications

» Supervised: Wordscores (LBG 2003); SVMs (Yu, Kaufman and
Diermeier 2008); Naive Bayes (Evans et al 2007)

» Unsupervised “Wordfish” (Slapin and Proksch 2008);
Correspondence analysis (Schonhardt-Bailey 2008);
two-dimensional IRT (Monroe and Maeda 2004)



Multinomial Bayes model of Class given a Word

Consider J word types distributed across / documents, each
assigned one of K classes.

At the word level, Bayes Theorem tells us that:

P(wj|ck)P(ck)

P(cklw)) = P(w)

For two classes, this can be expressed as

P(wjl|ck)P(ck)

= Pwla)P(c) + P(wjles)Ple ) @)




Multinomial Bayes model of Class given a Word
Class-conditional word likelihoods

N P(wj|ci) P(ck)
P(ci|w;) = p(WJ-yck)P(ck)JJr P(wj|c-k)P(c-k)

» The word likelihood within class

» The maximum likelihood estimate is simply the proportion of
times that word j occurs in class k, but it is more common to
use Laplace smoothing by adding 1 to each oberved count
within class



Multinomial Bayes model of Class given a Word
Word probabilities

P(wj|ci) P(ck)

P(ck|wj) = J
! P(w))

> This represents the word probability from the training corpus

» Usually uninteresting, since it is constant for the training
data, but needed to compute posteriors on a probability scale



Multinomial Bayes model of Class given a Word
Class prior probabilities

B P(wj|e) P(ck)
PLk™) = BlasTedPlen) + Plwlen) Pler)

» This represents the class prior probability
» Machine learning typically takes this as the document
frequency in the training set

» This approach is flawed for scaling, however, since we are
scaling the latent class-ness of an unknown document, not
predicting class — uniform priors are more appropriate



Multinomial Bayes model of Class given a Word
Class posterior probabilities

B P(wj|ci) P(ck)
P(ck|w;) = p(,,,,j,Ck),D(Ck)JJr P(w;|cok) P(c-k)

» This represents the posterior probability of membership in
class k for word j

» Under certain conditions, this is identical to what LBG (2003)
called Py,

» Under those conditions, the LBG “wordscore” is the linear
difference between P(ck|w;) and P(c_k|w;)



Moving to the document level

» The “Naive” Bayes model of a joint document-level class
posterior assumes conditional independence, to multiply the
word likelihoods from a “test” document, to produce:

P(wjlc)

P(c|d) = P(c) . W

» This is why we call it “naive”: because it (wrongly) assumes:

» conditional independence of word counts
» positional independence of word counts



Naive Bayes Classification Example

(From Manning, Raghavan and Schiitze, Introduction to
Information Retrieval)

» Table 13.1 Data for parameter estimation examples.

docID words in document in ¢ = China?
training set 1 Chinese Beijing Chinese yes

2 Chinese Chinese Shanghai yes

3 Chinese Macao yes

4 Tokyo Japan Chinese no
test set 5 Chinese Chinese Chinese Tokyo Japan ?



Naive Bayes Classification Example

Example 13.1:  For the example in Table 13.1, the multinomial parameters we
need to classify the test document are the priors P(c) = 3/4 and P(c) = 1/4 and the
following conditional probabilities:

P(Chineselc) = (5+1)/(8+6)=6/14=3/7
P(Tokyo|c) = P(Japan|c) = (0+1)/(8+6)=1/14
P(Chineselc) = (1+1)/(3+6)=2/9
D(Tokyo|c) = P(Japan[c) = (1+1)/(346)=2/9

The denominators are (8 + 6) and (3 + 6) because the lengths of text; and textz are 8
and 3, respectively, and because the constant B in Equation (13.7) is 6 as the vocabu-
lary consists of six terms.

We then get:

Plelds) o 3/4-(3/7)%-1/14-1/14 = 0.0003.
P(elds) o 1/4-(2/9)%-2/9-2/9 ~ 0.0001.

Thus, the classifier assigns the test document to ¢ = China. The reason for this clas-
sification decision is that the three occurrences of the positive indicator Chinese in d5
outweigh the occurrences of the two negative indicators Japan and Tokyo.



THE k-NN CLASSIFIER



Other classification methods: k-nearest neighbour

» A non-parametric method for classifying objects based on the
training examples taht are closest in the feature space

> A type of instance-based learning, or “lazy learning” where
the function is only approximated locally and all computation
is deferred until classification

» An object is classified by a majority vote of its neighbors, with
the object being assigned to the class most common amongst
its k nearest neighbors (where k is a positive integer, usually
small)

» Extremely simple: the only parameter that adjusts is k
(number of neighbors to be used) - increasing k smooths the
decision boundary



k-NN Example: Red or Blue?






Bayes Emor 0210







k-nearest neighbour issues: Dimensionality

» Distance usually relates to all the attributes and assumes all
of them have the same effects on distance

» Misclassification may results from attributes not confirming to
this assumption (sometimes called the “curse of
dimensionality” ) — solution is to reduce the dimensions

» There are (many!) different metrics of distance



SUPPORT VECTOR MACHINES



(Very) General overview to SVMs

» Generalization of maximal margin classifier

» The idea is to find the classification boundary that maximizes
the distance to the marginal points

» Unfortunately MMC does not apply to cases with non-linear
decision boundaries



No solution to this using support vector classifier
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SVMs represent the data in a higher dimensional projection using a
kernel, and bisect this using a hyperplane

Gene 2

Gene 1

Data is not linearly separable Data is linearly separable in the
in the input space feature space obtained by a kernel



This is only needed when no linear separation plane exists - so not
needed in second of these

Gene 2 Gene 2

Gene 1



Different “kernels” can represent different decision
boundaries

» This has to do with different projections of the data into
higher-dimensional space

» The mathematics of this are complicated but solveable as
forms of optimization problems - but the kernel choice is a
user decision




EVALUATING CLASSIFIER PERFORMANCE



Basic principles of machine learning: Generalization and
overfitting

» Generalization: A classifier or a regression algorithm learns to
correctly predict output from given inputs not only in
previously seen samples but also in previously unseen samples

» Overfitting: A classifier or a regression algorithm learns to
correctly predict output from given inputs in previously seen
samples but fails to do so in previously unseen samples. This
causes poor prediction/generalization.

» Goal is to maximize the frontier of precise identification of
true condition with accurate recall



Precision and recall

» Same intuition as specificity and sensitivity earlier in course

True condition
Positive Negative

Positive

Prediction

Negative




Precision and recall and related statistics

P true positives
> Precision: true positives + false positives
» Recall: true positives
" true positives + false negatives
i Correctly classified
> Accuracy. Total number of cases
» F1 =2 Precision X Recall

Precision 4 Recall
(the harmonic mean of precision and recall)



Example: Computing precision /recall

Assume:

» We have a corpus where 80 documents are really positive (as
opposed to negative, as in sentiment)

» Our method declares that 60 are positive

» Of the 60 declared positive, 45 are actually positive

Solution:

Precision = (45/(45 + 15)) = 45/60 = 0.75
Recall = (45/(45 + 35)) = 45/80 = 0.56



Accuracy?

True condition

Prediction

Positive

Negative

Positive

80

Negative

60



add in the cells we can compute

True condition

Prediction

Positive

Negative

80

Positive

Negative

60



but need True Negatives and N to compute accuracy

[ True condition
Positive Negative

Positive 60

Prediction

Negative

80



assume 10 True Negatives:

[ True condition

Positive Negative
Positive 60
Prediction
Negative 45
80 25 105
Accuracy = (45 + 10),/105 = 0.52

F1=2%(0.75%0.56)/(0.75+ 0.56) = 0.64



now assume 100 True Negatives:

[ True condition

Positive Negative
Positive 60
Prediction
Negative 135
80 115 195
Accuracy = (45 + 100)/195 =0.74

F1=2%(0.75%0.56)/(0.75+ 0.56) = 0.64



RELIABILITY TESTING FOR THE TRAINING SET



How do we get "true” condition?

> In some domains: through more expensive or extensive tests
> In social sciences: typically by expert annotation or coding

» A scheme should be tested and reported for its reliability



Inter-rater reliability

Different types are distinguished by the way the reliability data is

obtained.
Type Test Design  Causes of Disagreements Strength
Stability  test-retest intraobserver inconsistencies weakest
Reproduc- test-test intraobserver inconsistencies +  medium
ibility interobserver disagreements
Accuracy test-standard intraobserver inconsistencies +  strongest

interobserver disagreements +
deviations from a standard




Measures of agreement

» Percent agreement Very simple: (number of agreeing ratings)
/ (total ratings) * 100%
» Correlation

v

(usually) Pearson’s r, aka product-moment correlation
. _ 1 n A=A\ (Bi=B
Formula: rap = =7 > 1.4 ( = ) ( )

SB
May also be ordinal, such as Spearman’s rho or Kendall's tau-b

Range is [0,1]
> Agreement measures

v

v

v

» Take into account not only observed agreement, but also
agreement that would have occured by chance

» Cohen's k is most common

» Krippendorf's « is a generalization of Cohen's

» Both range from [0,1]



Reliability data matrixes

Example here used binary data (from Krippendorff)
Article: |1 2 3 4 5 6 7 8 9 10
CoderA|1 1 0 0 0O OO O O O
CoderB|0O 1 1 0 0 1 0 1 0 O

» A and B agree on 60% of the articles: 60% agreement

v

Correlation is (approximately) 0.10

v

Observed disagreement: 4

v

Expected disagreement (by chance): 4.4211
=0.095

v

Krippendorff's o = 1 — %: —1_ ﬁ

v

Cohen’s k (nearly) identical



