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Documents as vectors

I The idea is that (weighted) features form a vector for each
document, and that these vectors can be judged using metrics
of similarity

I A document’s vector for us is simply (for us) the row of the
document-feature matrix



Characteristics of similarity measures

Let A and B be any two documents in a set and d(A,B) be the
distance between A and B.

1. d(x , y) ≥ 0 (the distance between any two points must be
non-negative)

2. d(A,B) = 0 iff A = B (the distance between two documents
must be zero if and only if the two objects are identical)

3. d(A,B) = d(B,A) (distance must be symmetric: A to B is
the same distance as from B to A)

4. d(A,C ) ≤ d(A,B) + d(B,C ) (the measure must satisfy the
triangle inequality)



Euclidean distance

Between document A and B where j indexes their features, where
yij is the value for feature j of document i

I Euclidean distance is based on the Pythagorean theorem

I Formula √√√√ j∑
i=1

(yAj − yBj)2 (1)

I In vector notation:
‖yA − yB‖ (2)

I Can be performed for any number of features J (or V as the
vocabulary size is sometimes called – the number of columns
in of the dfm, same as the number of feature types in the
corpus)



Remember Mr. Cosine?

In a right angled triangle, the cosine of an angle θ or cos(θ) is the
length of the adjacent side divided by the length of the hypotenuse

We can use the vectors to represent the text location in a
V -dimensional vector space and compute the angles between them



Cosine similarity

I Cosine distance is based on the size of the angle between the
vectors

I Formula
yA · yB
‖yA‖‖yB‖

(3)

I The · operator is the inner product, or
∑

j yAjyBj
I The ‖yA‖ is the vector norm of the (vector of) features vector

y for document A, such that ‖yA‖ =
√∑

j y
2
Aj

I Nice property: independent of document length, because it
deals only with the angle of the vectors

I Ranges from -1.0 to 1.0 for term frequencies, or 0 to 1.0 for
normalized term frequencies (or tf-idf)



Cosine similarity illustrated



Example text

12 

Document similarity 
Hurricane Gilbert swept toward the Dominican 

Republic Sunday , and the Civil  Defense  
alerted its heavily  populated south coast to 
prepare for high winds, heavy rains and high 
seas.  

The storm was approaching from the southeast 
with sustained  winds of 75 mph gusting to 92 
mph .  

�There is no need for alarm," Civil Defense 
Director Eugenio Cabral said in  a television  
alert shortly before  midnight Saturday .  

Cabral said residents of the province of Barahona 
should closely  follow Gilbert 's movement .  

An estimated 100,000 people live in the province, 
including 70,000 in the city of Barahona , about 
125 miles  west of Santo Domingo .  

Tropical Storm Gilbert formed in the eastern 
Caribbean and strengthened into a hurricane 
Saturday night  

The National Hurricane Center in Miami 
reported its position at 2a.m. Sunday at 
latitude 16.1  north ,  longitude 67.5 west, 
about 140 miles south of Ponce, Puerto 
Rico, and 200 miles southeast of Santo 
Domingo.  

The National Weather Service in San Juan , 
Puerto Rico , said Gilbert was  moving 
westward at 15 mph with  a "broad area of 
cloudiness and heavy  weather" rotating 
around the center of the storm.  

The weather service issued a flash flood watch 
for Puerto Rico and the Virgin Islands until 
at least 6p.m. Sunday.  

Strong winds associated with the Gilbert 
brought coastal flooding , strong southeast 
winds and up  to 12 feet  to Puerto Rico 's 
south coast.  



Example text: selected terms

I Document 1
Gilbert: 3, hurricane: 2, rains: 1, storm: 2, winds: 2

I Document 2
Gilbert: 2, hurricane: 1, rains: 0, storm: 1, winds: 2



Example text: cosine similarity in R

cut          96
economic     89
> wordcloudDfm(myDfm[1])
Error in wordcloudDfm(myDfm[1]) : 
  word matrix argument must be a dfm object
> wordcloudDfm(myDfm[,1])
Error in wordcloudDfm(myDfm[, 1]) : 
  word matrix argument must be a dfm object
> wordcloudDfm(myDfm, 1)
Loading required package: wordcloud
Loading required package: RColorBrewer
> help(package="quanteda")
starting httpd help server ... done
> countSyllables("How many syllables are in this sentence")
[1] 1 2 3 1 1 1 2
> countSyllables(c("How many syllables are in this sentence", "Three two seven.")
+ )
[1] 11  4
> library(proxy)

Attaching package: ‘proxy’

The following objects are masked from ‘package:stats’:

    as.dist, dist

> toyDfm <- matrix(c(3,2,1,2,2, 2,1,0,1,2), nrow=2, byrow=TRUE)
> colnames(toyDfm) <- c("Gilbert", "hurricane", "rain", "storm", "winds")
> rownames(toyDfm) <- c("doc1", "doc2")
> toyDfm
     Gilbert hurricane rain storm winds
doc1       3         2    1     2     2
doc2       2         1    0     1     2
> simil(toyDfm, "cosine")
          doc1
doc2 0.9438798
> 



The former measures the similarity of vectors with respect to the
origin, while the latter measures the distance between particular
points of interest along the vector.



Relationship to Euclidean distance

I Cosine similarity measures the similarity of vectors with
respect to the origin

I Euclidean distance measures the distance between particular
points of interest along the vector



Relationship to Euclidean distance

I Euclidean distance is ‖yA − yB‖
I cos(A,B) = yA·yB

‖yA‖‖yB‖

If A and B are normalized to unit length (term proportions instead
of frequencies), such that ‖A‖2 = ‖B‖2 = 1, then

‖yA − yB‖2 = (A− B)′(A− B)

= ‖A‖2 + ‖B‖2 − 2 A′B

= 2(1− cos(A,B))

where (1− cos(A,B)) is the complement of the cosine similarity,
also known as cosine distance

so the Euclidean distance is twice the cosine distance for
normalized term vectors



Jacquard coefficient

I Similar to the Cosine similarity

I Formula
yA · yB

‖yA‖+ ‖yB‖ − yA · yyB
(4)

I Ranges from 0 to 1.0

I The × operator is a ????



Can be made very general for binary features
Example: In the Choi et al paper, they compare vectors of features
for (binary) absence or presence – called (“operational taxonomic

units”)

A Survey of Binary Similarity and Distance Measures 
 

Seung-Seok Choi, Sung-Hyuk Cha, Charles C. Tappert 
Department of Computer Science, Pace University 

New York, US 

ABSTRACT 
 
The binary feature vector is one of the most common 
representations of patterns and measuring similarity and 
distance measures play a critical role in many problems 
such as clustering, classification, etc. Ever since Jaccard 
proposed a similarity measure to classify ecological 
species in 1901, numerous binary similarity and distance 
measures have been proposed in various fields. Applying 
appropriate measures results in more accurate data 
analysis. Notwithstanding, few comprehensive surveys 
on binary measures have been conducted. Hence we 
collected 76 binary similarity and distance measures used 
over the last century and reveal their correlations through 
the hierarchical clustering technique.  
 
Keywords:  binary similarity measure, binary distance 
measure, hierarchical clustering, classification, 
operational taxonomic unit 
 

1. INTRODUCTION 
 
The binary similarity and dissimilarity (distance) 
measures play a critical role in pattern analysis problems 
such as classification, clustering, etc. Since the 
performance relies on the choice of an appropriate 
measure, many researchers have taken elaborate efforts to 
find the most meaningful binary similarity and distance 
measures over a hundred years. Numerous binary 
similarity measures and distance measures have been 
proposed in various fields. 
 
For example, the Jaccard similarity measure was used for 
clustering ecological species [20], and Forbes proposed a 
coefficient for clustering ecologically related species [13, 
14]. The binary similarity measures were subsequently 
applied in biology [19, 23], ethnology [8], taxonomy 
[27], image retrieval [25], geology [24], and chemistry 
[29]. Recently, they have been actively used to solve the 
identification problems in biometrics such as fingerprint 
[30], iris images [4], and handwritten character 
recognition [2, 3]. Many papers [7, 16, 17, 18, 19, 22, 26] 
discuss their properties and features.  
 
Even though numerous binary similarity measures have 
been described in the literature, only a few comparative 
studies collected the wide variety of binary similarity 
measures [4, 5, 19, 21, 28, 30, 31]. Hubalek collected 43 
similarity measures, and 20 of them were used for cluster 
analysis on fungi data to produce five clusters of related 
coefficients [19]. Jackson et al. compared eight binary 
similarity measures to choose the best measure for 

ecological 25 fish species [21]. Tubbs summarized seven 
conventional similarity measures to solve the template 
matching problem [28], and Zhang et al. compared those 
seven measures to show the recognition capability in 
handwriting identification [31]. Willett evaluated 13 
similarity measures for binary fingerprint code [30]. Cha 
et al. proposed weighted binary measurement to improve 
classification performance based on the comparative 
study [4].  
 
Few studies, however, have enumerated or grouped the 
existing binary measures. The number of similarity or 
dissimilarity measures was often limited to those 
provided from several commercial statistical cluster 
analysis tools. We collected and analyzed 76 binary 
similarity and distance measures used over the last 
century, providing the most extensive survey on these 
measures.  
 
This paper is organized as follows. Section 2 describes 
the definitions of 76 binary similarity and dissimilarity 
measures. Section 3 discusses the grouping of those 
measures using hierarchical clustering. Section 4 
concludes this work. 
 

2. DEFINITIONS 
 

Table 1 OTUs Expression of Binary Instances i and j 
j        i 1 (Presence) 0 (Absence) Sum 

1 (Presence) jia x  jib x  a+b 

0 (Absence) jic x  jid x  c+d 

Sum a+c b+d n=a+b+c+d 

 
Suppose that two objects or patterns, i and j are 
represented by the binary feature vector form. Let n be 
the number of features (attributes) or dimension of the 
feature vector. Definitions of binary similarity and 
distance measures are expressed by Operational 
Taxonomic Units (OTUs as shown in Table 1) [9] in a 2 x 
2 contingency table  where a is the number of features 
where the values of i and j are both 1 (or presence), 
meaning ‘positive matches’, b is the number of attributes 
where the value of i and j is (0,1), meaning ‘i absence 
mismatches’, c is the number of attributes where the 
value of i and j is (1,0), meaning ‘j absence mismatches’, 
and d is the number of attributes where both i and j have 
0 (or absence), meaning ‘negative matches’. The diagonal 
sum a+d represents the total number of matches between 

I Cosine similarity:

scosine =
a√

(a + b)(a + c)
(5)

I Jaccard similarity:

sJaccard =
a√

(a + b + c)
(6)



Typical features

I Normalized term frequency (almost certainly)

I Very common to use tf-idf – if not, similarity is boosted by
common words (stop words)

I Not as common to use binary features



Uses for similarity measures: Clustering



Other used for similarity measures

I Used extensively in information retrieval

I Summmary measures of how far apart two texts are – but be
careful exactly how you define “features”

I Some but not many applications in social sciences to measure
substantive similarity — scaling models are generally preferred



Edit distances

I Edit distance refers to the number of operations required to
transform one string into another

I Common edit distance: the Levenshtein distance
I Example: the Levenshtein distance between ”kitten” and

”sitting” is 3
I kitten → sitten (substitution of ”s” for ”k”)
I sitten → sittin (substitution of ”i” for ”e”)
I sittin → sitting (insertion of ”g” at the end).

I Not common, as at a textual level this is hard to implement
and possibly meaningless



Detecting “keywords”: Constructing the association table

Class A Class B Total

Word a b a+b

~ Word c d c+d

Total a+c b+d N = a+b+c+d



Pearson’s chi-squared statistic

χ2 =
∑ (observed − expected)2

expected
=

k∑
i=1

(Yi − npi )
2

npi

d .f . = k − 1



Chi-squared test of independence

Basic intuition: if the two variables were independent of each
other, the relative proportions should be similar to the marginal
distributions.

E.g. a word would occur at equal relative frequencies in each
subset of a corpus

Since we have two margins, we need to calculate the proportion as:

p̂word ,subset = p̂word × p̂subset

Generally:

Expected Frequency =
r

N
· c
N
· n =

rc

N

where r and c refer to row and column marginals



Quantifying Uncertainty

I Critical if we really want to compare texts
I Question: How?

I Make parametric assumptions about the data-generating
process. For instance, we could model feature counts
according to a Poisson distribution.

I Use a sampling procedure and obtain averages from the
samples. For instance we could sample 100-word sequences,
compute reliability, and look at the spread of the readability
measures from the samples

I Bootstrapping: a generalized resampling method



Bootstrapping

I Bootstrapping refers to repeated resampling of data points
with replacement

I Used to estimate the error variance (i.e. the standard error) of
an estimate when the sampling distribution is unknown (or
cannot be safely assumed)

I Robust in the absence of parametric assumptions

I Useful for some quantities for which there is no known
sampling distribution, such as computing the standard error of
a median



Bootstrapping illustrated

> ## illustrate bootstrap sampling

> # using sample to generate a permutation of the sequence 1:10

> sample(10)

[1] 6 1 2 4 5 7 9 3 10 8

> # bootstrap sample from the same sequence

> sample(10, replace=T)

[1] 3 3 10 7 5 3 9 8 7 6

> # boostrap sample from the same sequence with probabilities that

> # favor the numbers 1-5

> prob1 <- c(rep(.15, 5), rep(.05, 5))

> prob1

[1] 0.15 0.15 0.15 0.15 0.15 0.05 0.05 0.05 0.05 0.05

> sample(10, replace=T, prob=prob1)

[1] 10 4 7 6 5 2 9 5 1 5



Bootstrapping the standard error of the median

Using loops:

bs <- NULL

for (i in 1:100) {

bs[i] <- median(sample(spending, replace=TRUE))

}

quantile(bs, c(.025, .5, .975))

median(spending)



Bootstrapping the standard error of the median

Using lapply and sapply:

resamples <- lapply(1:100, function(i) sample(spending, replace=TRUE))

bs <- sapply(resamples, median)

quantile(bs, c(.025, .5, .975))



Bootstrapping the standard error of the median

Using a user-defined function:

b.median <- function(data, n) {

resamples <- lapply(1:n, function(i) sample(data, replace=T))

sapply(resamples, median)

std.err <- sqrt(var(r.median))

list(std.err=std.err, resamples=resamples, medians=r.median)

}

summary(b.median(spending, 10))

summary(b.median(spending, 100))

summary(b.median(spending, 400))

median(spending)



Bootstrapping the standard error of the median

Using R’s boot library:

library(boot)

samplemedian <- function(x, d) return(median(x[d]))

quantile(boot(spending, samplemedian, R=10)$t, c(.025, .5, .975))

quantile(boot(spending, samplemedian, R=100)$t, c(.025, .5, .975))

quantile(boot(spending, samplemedian, R=400)$t, c(.025, .5, .975))

Note: There is a good reference on using boot() from
http://www.mayin.org/ajayshah/KB/R/documents/boot.html

http://www.mayin.org/ajayshah/KB/R/documents/boot.html


Guidelines for bootstrapping text

I Bootstrap by resampling tokens.
Advantage: This is easily done from the document-feature
matrix.
Disadvantage: Ignores the natural units into which text is
grouped, such as sentences

I Bootstrap by resampling sentences.
Advantage: Produces more meaningful (potentially readable)
texts, more faithful to data-generating process.
Disadvantage: More complicated, cannot be done from dfm,
must segment the text into sentences and construct a new
dfm for each resample.

I Other options:
I paragraphs
I pages
I chapters
I stratified: words within sentences or paragraphs


	Bootstrapping

