
Day 4: Quantitative methods for comparing texts

Kenneth Benoit

Essex Summer School 2014

July 24, 2013

Documents as vectors

I The idea is that (weighted) features form a vector for each
document, and that these vectors can be judged using metrics
of similarity

I A document’s vector for us is simply (for us) the row of the
document-feature matrix

Characteristics of similarity measures

Let A and B be any two documents in a set and d(A,B) be the
distance between A and B.

1. d(x , y) ≥ 0 (the distance between any two points must be
non-negative)

2. d(A,B) = 0 iff A = B (the distance between two documents
must be zero if and only if the two objects are identical)

3. d(A,B) = d(B,A) (distance must be symmetric: A to B is
the same distance as from B to A)

4. d(A,C) ≤ d(A,B) + d(B,C) (the measure must satisfy the
triangle inequality)

Euclidean distance

Between document A and B where j indexes their features, where
yij is the value for feature j of document i

I Euclidean distance is based on the Pythagorean theorem

I Formula √√√√ j∑
i=1

(yAj − yBj)2 (1)

I In vector notation:
‖yA − yB‖ (2)

I Can be performed for any number of features J (or V as the
vocabulary size is sometimes called – the number of columns
in of the dfm, same as the number of feature types in the
corpus)

Remember Mr. Cosine?

In a right angled triangle, the cosine of an angle θ or cos(θ) is the
length of the adjacent side divided by the length of the hypotenuse

We can use the vectors to represent the text location in a
V -dimensional vector space and compute the angles between them

Cosine similarity

I Cosine distance is based on the size of the angle between the
vectors

I Formula
yA · yB
‖yA‖‖yB‖

(3)

I The · operator is the inner product, or
∑

j yAjyBj
I The ‖yA‖ is the vector norm of the (vector of) features vector

y for document A, such that ‖yA‖ =
√∑

j y
2
Aj

I Nice property: independent of document length, because it
deals only with the angle of the vectors

I Ranges from -1.0 to 1.0 for term frequencies, or 0 to 1.0 for
normalized term frequencies (or tf-idf)

Cosine similarity illustrated

Example text

12

Document similarity
Hurricane Gilbert swept toward the Dominican

Republic Sunday , and the Civil Defense
alerted its heavily populated south coast to
prepare for high winds, heavy rains and high
seas.

The storm was approaching from the southeast
with sustained winds of 75 mph gusting to 92
mph .

�There is no need for alarm," Civil Defense
Director Eugenio Cabral said in a television
alert shortly before midnight Saturday .

Cabral said residents of the province of Barahona
should closely follow Gilbert 's movement .

An estimated 100,000 people live in the province,
including 70,000 in the city of Barahona , about
125 miles west of Santo Domingo .

Tropical Storm Gilbert formed in the eastern
Caribbean and strengthened into a hurricane
Saturday night

The National Hurricane Center in Miami
reported its position at 2a.m. Sunday at
latitude 16.1 north , longitude 67.5 west,
about 140 miles south of Ponce, Puerto
Rico, and 200 miles southeast of Santo
Domingo.

The National Weather Service in San Juan ,
Puerto Rico , said Gilbert was moving
westward at 15 mph with a "broad area of
cloudiness and heavy weather" rotating
around the center of the storm.

The weather service issued a flash flood watch
for Puerto Rico and the Virgin Islands until
at least 6p.m. Sunday.

Strong winds associated with the Gilbert
brought coastal flooding , strong southeast
winds and up to 12 feet to Puerto Rico 's
south coast.

Example text: selected terms

I Document 1
Gilbert: 3, hurricane: 2, rains: 1, storm: 2, winds: 2

I Document 2
Gilbert: 2, hurricane: 1, rains: 0, storm: 1, winds: 2

Example text: cosine similarity in R

cut 96
economic 89
> wordcloudDfm(myDfm[1])
Error in wordcloudDfm(myDfm[1]) :
 word matrix argument must be a dfm object
> wordcloudDfm(myDfm[,1])
Error in wordcloudDfm(myDfm[, 1]) :
 word matrix argument must be a dfm object
> wordcloudDfm(myDfm, 1)
Loading required package: wordcloud
Loading required package: RColorBrewer
> help(package="quanteda")
starting httpd help server ... done
> countSyllables("How many syllables are in this sentence")
[1] 1 2 3 1 1 1 2
> countSyllables(c("How many syllables are in this sentence", "Three two seven.")
+)
[1] 11 4
> library(proxy)

Attaching package: ‘proxy’

The following objects are masked from ‘package:stats’:

 as.dist, dist

> toyDfm <- matrix(c(3,2,1,2,2, 2,1,0,1,2), nrow=2, byrow=TRUE)
> colnames(toyDfm) <- c("Gilbert", "hurricane", "rain", "storm", "winds")
> rownames(toyDfm) <- c("doc1", "doc2")
> toyDfm
 Gilbert hurricane rain storm winds
doc1 3 2 1 2 2
doc2 2 1 0 1 2
> simil(toyDfm, "cosine")
 doc1
doc2 0.9438798
>

The former measures the similarity of vectors with respect to the
origin, while the latter measures the distance between particular
points of interest along the vector.

Relationship to Euclidean distance

I Cosine similarity measures the similarity of vectors with
respect to the origin

I Euclidean distance measures the distance between particular
points of interest along the vector

Relationship to Euclidean distance

I Euclidean distance is ‖yA − yB‖
I cos(A,B) = yA·yB

‖yA‖‖yB‖

If A and B are normalized to unit length (term proportions instead
of frequencies), such that ‖A‖2 = ‖B‖2 = 1, then

‖yA − yB‖2 = (A− B)′(A− B)

= ‖A‖2 + ‖B‖2 − 2 A′B

= 2(1− cos(A,B))

where (1− cos(A,B)) is the complement of the cosine similarity,
also known as cosine distance

so the Euclidean distance is twice the cosine distance for
normalized term vectors

Jacquard coefficient

I Similar to the Cosine similarity

I Formula
yA · yB

‖yA‖+ ‖yB‖ − yA · yyB
(4)

I Ranges from 0 to 1.0

I The × operator is a ????

Can be made very general for binary features
Example: In the Choi et al paper, they compare vectors of features
for (binary) absence or presence – called (“operational taxonomic

units”)

A Survey of Binary Similarity and Distance Measures

Seung-Seok Choi, Sung-Hyuk Cha, Charles C. Tappert
Department of Computer Science, Pace University

New York, US

ABSTRACT

The binary feature vector is one of the most common
representations of patterns and measuring similarity and
distance measures play a critical role in many problems
such as clustering, classification, etc. Ever since Jaccard
proposed a similarity measure to classify ecological
species in 1901, numerous binary similarity and distance
measures have been proposed in various fields. Applying
appropriate measures results in more accurate data
analysis. Notwithstanding, few comprehensive surveys
on binary measures have been conducted. Hence we
collected 76 binary similarity and distance measures used
over the last century and reveal their correlations through
the hierarchical clustering technique.

Keywords: binary similarity measure, binary distance
measure, hierarchical clustering, classification,
operational taxonomic unit

1. INTRODUCTION

The binary similarity and dissimilarity (distance)
measures play a critical role in pattern analysis problems
such as classification, clustering, etc. Since the
performance relies on the choice of an appropriate
measure, many researchers have taken elaborate efforts to
find the most meaningful binary similarity and distance
measures over a hundred years. Numerous binary
similarity measures and distance measures have been
proposed in various fields.

For example, the Jaccard similarity measure was used for
clustering ecological species [20], and Forbes proposed a
coefficient for clustering ecologically related species [13,
14]. The binary similarity measures were subsequently
applied in biology [19, 23], ethnology [8], taxonomy
[27], image retrieval [25], geology [24], and chemistry
[29]. Recently, they have been actively used to solve the
identification problems in biometrics such as fingerprint
[30], iris images [4], and handwritten character
recognition [2, 3]. Many papers [7, 16, 17, 18, 19, 22, 26]
discuss their properties and features.

Even though numerous binary similarity measures have
been described in the literature, only a few comparative
studies collected the wide variety of binary similarity
measures [4, 5, 19, 21, 28, 30, 31]. Hubalek collected 43
similarity measures, and 20 of them were used for cluster
analysis on fungi data to produce five clusters of related
coefficients [19]. Jackson et al. compared eight binary
similarity measures to choose the best measure for

ecological 25 fish species [21]. Tubbs summarized seven
conventional similarity measures to solve the template
matching problem [28], and Zhang et al. compared those
seven measures to show the recognition capability in
handwriting identification [31]. Willett evaluated 13
similarity measures for binary fingerprint code [30]. Cha
et al. proposed weighted binary measurement to improve
classification performance based on the comparative
study [4].

Few studies, however, have enumerated or grouped the
existing binary measures. The number of similarity or
dissimilarity measures was often limited to those
provided from several commercial statistical cluster
analysis tools. We collected and analyzed 76 binary
similarity and distance measures used over the last
century, providing the most extensive survey on these
measures.

This paper is organized as follows. Section 2 describes
the definitions of 76 binary similarity and dissimilarity
measures. Section 3 discusses the grouping of those
measures using hierarchical clustering. Section 4
concludes this work.

2. DEFINITIONS

Table 1 OTUs Expression of Binary Instances i and j
j i 1 (Presence) 0 (Absence) Sum

1 (Presence) jia x jib x a+b

0 (Absence) jic x jid x c+d

Sum a+c b+d n=a+b+c+d

Suppose that two objects or patterns, i and j are
represented by the binary feature vector form. Let n be
the number of features (attributes) or dimension of the
feature vector. Definitions of binary similarity and
distance measures are expressed by Operational
Taxonomic Units (OTUs as shown in Table 1) [9] in a 2 x
2 contingency table where a is the number of features
where the values of i and j are both 1 (or presence),
meaning ‘positive matches’, b is the number of attributes
where the value of i and j is (0,1), meaning ‘i absence
mismatches’, c is the number of attributes where the
value of i and j is (1,0), meaning ‘j absence mismatches’,
and d is the number of attributes where both i and j have
0 (or absence), meaning ‘negative matches’. The diagonal
sum a+d represents the total number of matches between

I Cosine similarity:

scosine =
a√

(a + b)(a + c)
(5)

I Jaccard similarity:

sJaccard =
a√

(a + b + c)
(6)

Typical features

I Normalized term frequency (almost certainly)

I Very common to use tf-idf – if not, similarity is boosted by
common words (stop words)

I Not as common to use binary features

Uses for similarity measures: Clustering

Other used for similarity measures

I Used extensively in information retrieval

I Summmary measures of how far apart two texts are – but be
careful exactly how you define “features”

I Some but not many applications in social sciences to measure
substantive similarity — scaling models are generally preferred

Edit distances

I Edit distance refers to the number of operations required to
transform one string into another

I Common edit distance: the Levenshtein distance
I Example: the Levenshtein distance between ”kitten” and

”sitting” is 3
I kitten → sitten (substitution of ”s” for ”k”)
I sitten → sittin (substitution of ”i” for ”e”)
I sittin → sitting (insertion of ”g” at the end).

I Not common, as at a textual level this is hard to implement
and possibly meaningless

Detecting “keywords”: Constructing the association table

Class A Class B Total

Word a b a+b

~ Word c d c+d

Total a+c b+d N = a+b+c+d

Pearson’s chi-squared statistic

χ2 =
∑ (observed − expected)2

expected
=

k∑
i=1

(Yi − npi)
2

npi

d .f . = k − 1

Chi-squared test of independence

Basic intuition: if the two variables were independent of each
other, the relative proportions should be similar to the marginal
distributions.

E.g. a word would occur at equal relative frequencies in each
subset of a corpus

Since we have two margins, we need to calculate the proportion as:

p̂word ,subset = p̂word × p̂subset

Generally:

Expected Frequency =
r

N
· c
N
· n =

rc

N

where r and c refer to row and column marginals

Quantifying Uncertainty

I Critical if we really want to compare texts
I Question: How?

I Make parametric assumptions about the data-generating
process. For instance, we could model feature counts
according to a Poisson distribution.

I Use a sampling procedure and obtain averages from the
samples. For instance we could sample 100-word sequences,
compute reliability, and look at the spread of the readability
measures from the samples

I Bootstrapping: a generalized resampling method

Bootstrapping

I Bootstrapping refers to repeated resampling of data points
with replacement

I Used to estimate the error variance (i.e. the standard error) of
an estimate when the sampling distribution is unknown (or
cannot be safely assumed)

I Robust in the absence of parametric assumptions

I Useful for some quantities for which there is no known
sampling distribution, such as computing the standard error of
a median

Bootstrapping illustrated

> ## illustrate bootstrap sampling

> # using sample to generate a permutation of the sequence 1:10

> sample(10)

[1] 6 1 2 4 5 7 9 3 10 8

> # bootstrap sample from the same sequence

> sample(10, replace=T)

[1] 3 3 10 7 5 3 9 8 7 6

> # boostrap sample from the same sequence with probabilities that

> # favor the numbers 1-5

> prob1 <- c(rep(.15, 5), rep(.05, 5))

> prob1

[1] 0.15 0.15 0.15 0.15 0.15 0.05 0.05 0.05 0.05 0.05

> sample(10, replace=T, prob=prob1)

[1] 10 4 7 6 5 2 9 5 1 5

Bootstrapping the standard error of the median

Using loops:

bs <- NULL

for (i in 1:100) {

bs[i] <- median(sample(spending, replace=TRUE))

}

quantile(bs, c(.025, .5, .975))

median(spending)

Bootstrapping the standard error of the median

Using lapply and sapply:

resamples <- lapply(1:100, function(i) sample(spending, replace=TRUE))

bs <- sapply(resamples, median)

quantile(bs, c(.025, .5, .975))

Bootstrapping the standard error of the median

Using a user-defined function:

b.median <- function(data, n) {

resamples <- lapply(1:n, function(i) sample(data, replace=T))

sapply(resamples, median)

std.err <- sqrt(var(r.median))

list(std.err=std.err, resamples=resamples, medians=r.median)

}

summary(b.median(spending, 10))

summary(b.median(spending, 100))

summary(b.median(spending, 400))

median(spending)

Bootstrapping the standard error of the median

Using R’s boot library:

library(boot)

samplemedian <- function(x, d) return(median(x[d]))

quantile(boot(spending, samplemedian, R=10)$t, c(.025, .5, .975))

quantile(boot(spending, samplemedian, R=100)$t, c(.025, .5, .975))

quantile(boot(spending, samplemedian, R=400)$t, c(.025, .5, .975))

Note: There is a good reference on using boot() from
http://www.mayin.org/ajayshah/KB/R/documents/boot.html

http://www.mayin.org/ajayshah/KB/R/documents/boot.html

Guidelines for bootstrapping text

I Bootstrap by resampling tokens.
Advantage: This is easily done from the document-feature
matrix.
Disadvantage: Ignores the natural units into which text is
grouped, such as sentences

I Bootstrap by resampling sentences.
Advantage: Produces more meaningful (potentially readable)
texts, more faithful to data-generating process.
Disadvantage: More complicated, cannot be done from dfm,
must segment the text into sentences and construct a new
dfm for each resample.

I Other options:
I paragraphs
I pages
I chapters
I stratified: words within sentences or paragraphs

	Bootstrapping

