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Objectives and learning outcomes

I to more deeply understand the linear regression model

I to diagnose and correct problems with LRM in real data

I to apply generalizations of LRM to binary and count data

I to be able to read quantitative studies in political science

I to know where to go for more advanced techniques and
problems

I only prerequisite is an introductory statistics course (up to
linear regression), but the more previous statistics, the better



Assessment

I Problem sets

I not graded, but rather are for doing in lab sessions with
guidance

I you are welcome to write up the answers and submit them to
Carolina Plescia, the course TA C.Plescia@lse.ac.uk

I If you are taking the exam: this will be Friday morning of the
second week, with a review session the afternoon before

mailto:C.Plescia@lse.ac.uk


Texts and Software for this course

I Two primary texts
I Kennedy, Peter. 2008. A Guide to Econometrics. 6th ed.

Oxford: Blackwell
I Agresti, Alan and Barbara Finlay. 2009. Statistical Methods

for the Social Sciences (4th Edition). Prentice Hall.

I Software will be the Stata statistical package, version 12
I You can access this from any (Windows) LSE computer – we

will show you in the lab
I possible to get a student copy (and worth it)
I Mac and Linux versions also available



A problem: Method of Moments Failure

I Dublin uses serial numbers for cars such that 12-D-12371
means the year 2012, Dublin, and the 12371th registration
number issued

I Let’s say that based on a sample of observing number plates,
you want to estimate the total number of licenses issued in
2012

I Sample: 12371, 5740, 432, 21999, 7629, 9000

I The question is same as asking: What is N ?

I This is a version of a very common problem of estimating an
equation for averages or the mean



I From the sample, we can calculate a sample mean X̄ : 9,528.5

I We also know that from the population of serial numbers
1, 2, 3, . . .N, the mean µ in terms of N is µ = (N + 1)/2

I If E(µ) = X̄ , we can use this to solve for N:

µ = (N + 1)/2 (1)

2µ = N + 1

2µ− 1 = N

N = 2X̄ − 1

= 2(9, 528.5)− 1

= 19, 056

I So is answer 19,056?

I NO, since in this case we know it should be (at least) 21,999

I Lesson: Some methods of estimation are better than others!



Some suggestions at this point

I Suggestion: Review the Greek math alphabet, see
http://math.boisestate.edu/~tconklin/MATH144/

Main/Extras/PRGreekAlphabet.pdf

I Suggestion: Review the rules of matrix algebra

I Suggestion: Review the rules concerning expectations (and
variances)

http://math.boisestate.edu/~tconklin/MATH144/Main/Extras/PRGreekAlphabet.pdf
http://math.boisestate.edu/~tconklin/MATH144/Main/Extras/PRGreekAlphabet.pdf


The Birthday Problem

The Birthday Problem: What is the probability that two people in
this room will have the same birthday?
One of the most famous problems in combinatorics and probability.
What is the probability that in a room of n people, any two have
the same birthday?

I We start with (wrong!) assumptions: no leap years, no twins,
no seasonal or weekday variations, all birthdates equally likely

I Rephrase question: What is probability that no two of n
people will share a birthday?



The Birthday Problem

I Probability is 0 with 366 people

I Probability is 1.0 with 1 person, or 365
365 = 1.0

I Probability for two people is: 365
365 ·

364
365 = 0.9973

I Probability for three people is: 365
365 ·

364
365 ·

363
365 = 0.9918

I Formula for n people is:
365−1
365 ·

365−2
365 · · · · ·

365−1−n
365

I alternatively(
1− 365

n

)
· 1
365n = 365!

(365−n)!265n

I Crosses 0.50 at just 23 people!

I More than 0.75 at 30 people, and 0.99 at 57 people
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Randomness and statistical modelling

I The disturbance term: Y = f (X ) + ε. The ε makes the
function stochastic; without it the function would be
deterministic.

I Where does ε come from?

1. Omission of the influence of innumerable chance events.
2. Measurement error.
3. Human indeterminacy.

I Parameter is generally β or θ. Estimates will be β̂ or θ̂.

I Most common estimation method is to minimize the squared
errors (“least squares”). What are alternatives? (1) absolute
deviations, (2) horizontal deviations, (3) etc.



Point Estimation

I How can the population be estimated from the sample?

I A random sample is a random subset of the population

I “Strictly random” means all units from the population have
an equal probability of being chosen for the sample being
chosen for the sample

Sample Population

Relative frequencies fi
n are used to

compute:
Probabilities are used to compute

Sample mean X̄ Population mean µ
Sample variance s2 Population variance σ2

These random variables are statis-
tics or estimators

These fixed constants are parame-
ters or targets

Table: Review of Population v. Sample



Properties of Estimators: Bias

I U is an unbiased estimator of θ if E (U) = θ. An estimator V
is called biased if E (V ) is different from θ

I Bias ≡ E (V )− θ
I Bias is often assessed by characterizing the sampling

distribution of an estimator
I repeated samples are drawn by resampling from the

disturbance term (in our case, ε), while keeping the values of
the independent variables unchanged

I For instance we could do this 1,000 times using β∗ to calculate
an estimate of β

I The way that the 1,000 samples are distributed is called the
sampling distribution of β∗

I For an estimator β∗ to be an unbiased estimator of β means
that the mean of its sampling distribution is equal to β

I Another way to put this is that E(β∗) = β



Properties of Estimators: Efficiency

I We would like the distribution of an estimator to be highly
concentrated—to have a small variance. This is the notion of
efficiency. The efficiency of V compared to W is W ≡ varW

varV .

I If population being sampled is exactly symmetric, then center
can be estimated without bias by either the sample mean X̄ or
the sample median X ′. For large samples, varX ′ ≈ 1.57σ2/n.
Since X̄ has variance σ2/n, the smaller variance makes it
157% more efficient than the median for normal populations.

I This gives rise to the notion of relative efficiency, to which we
will return shortly

I Not really the same as “minimum variance”



Properties of Estimators: Consistency

I A consistent estimator is one that concentrates in a narrower
and narrower band around its target as sample size increases
indefinitely. MSE approaches zero in the limit: bias and
variance both approach zero as sample size increases.

I V is defined to be a consistent estimator of θ, if for any
positive δ (no matter how small), Pr(|V − θ|) < δ) −→ 1, as
n −→∞

I (Kennedy) If the asymptotic distribution of β̂ becomes
concentrated on a particular value k as N −→∞, k is said to
be the probability limit of β̂ and is written plimβ̂ = k ; if
plimβ̂ = β, then β̂ is said to be consistent



Choosing from among alternative estimators

I When we compare two unbiased estimators, which should we
choose?

I Answer: The one with minimum variance

I When comparing both biased, and unbiased, which should we
choose?

I Answer: The one with the best combination of small bias and
small variance

I Mean Squared Error (MSE): ≡ E (V − θ)2.



More on mean squared error

I MSE = (variance of estimator) + (its bias)2

I Relative efficiency of V compared to W : ≡ MSE(W )
MSE(V )



Large-sample properties of estimators

I asymptotically unbiased: means that a biased estimator has a
bias that tends to zero as sample size approaches infinity.

I When no estimator with desireable small-scale properties can
be found, we often must choose between different estimators
on the basis of asymptotic properties

I Asymptotic properties of estimators refer to what happens as
sample size increases towards infinity

I Many estimators are trusted in principle because of their
asymptotic properties, even when these don’t hold in smaller
samples (e.g. maximum likelihood)

I For many estimation problems, non-parametric alternatives
are favored when sample sizes are small

I Example: t-test versus Kruskal Wallis test; or Chi-squared test
versus Fisher exact test



Example: mean squared deviation

I Mean squared deviation or MSD = 1
n

∑
(X − X̄ )2

I This is a biased estimator of population variance σ2, since on
average it will underestimate true quantity

I For example, when X = 1, it yields MSD = 0

I As a result, we use instead the sample variance:

s2 ≡ 1
n−1

∑
(X − X̄ )2

I But MSD is asymptotically unbiased, since its bias approaches
zero as n→∞



Proof

MSD =

(
n − 1

n

)
s2 (2)

=

(
1− 1

n

)
s2 (3)

E (MSD) =

(
1− 1

n

)
E (s2) (4)

Since s2 is an unbiased estimator of σ2:

E (MSD) =

(
1− 1

n

)
E (σ2) (5)

= σ2 −
(

1

n

)
σ2 (6)

The last term
(
1
n

)
→ 0 as n→∞.



Maximum likelihood (very brief introduction)

I Based on the principle that the sample of data at hand is
more likely to have come from a world characterized by one
particular set of parameter values, than from any other set of
values

I Example: Given a set of coin toss data, what is the value of π
(the probability that xi =head) that is most likely to have
generated the data?

I Properties:
I asymptotically unbiased
I consistent
I (asymptotically) normally distributed
I asymptotic variance can be computed using a standard formula

I (almost all) maximization of likelihoods is done numerically
using computers

I The logit, probit, Poisson etc. models we will do later in this
class all use maximum likelihood for estimating parameters



Monte Carlo studies

I A Monte Carlo study is a simulation exercise designed to shed
light on the small-sample properties of competing estimators
for a given estimation problem

I Used when small-sample properties cannot be derived
theoretically, or as a supplement to theoretical derivations

I Allows direct exploration of samplong distributions, through
simulation

I Steps involved:

1. Model the data-generating process
2. Genereate artificial datasets
3. create estimates from the data using the estimator
4. use these estimates to assess the estimator’s sampling

distribution

I Monte Carlo simulation is extremely common and important
tool of modern statistical methods, and computationally very
accessible using modern computers and software (like R)



Monte Carlo example

I Consider the sample variance estimator s2 = n
n−1 ȳ2

I Cochran’s theorem shows that if Y is iid Normal, then s2

follows a scaled chi-square distribution χ2
n−1

I To verify this using Monte Carlo simulations, we can construct
sample datasets and examine the sampling distribution, for a
given sample size

# define a function for the sample variance

sv <- function(y) { length(y) / (length(y)-1) * mean(y)̂ 2 }

# create a loop to compute and store 1,000 simuated sample variances

# this will be from 50 random y values

result <- numeric(500)

for (i in 1:500) { result[i] <- sv(rnorm(50)) }

# plot the result, after sorting the computed sample variances

plot(sort(result), type="l", ylab="Computed sample variance")

# now check whether sampling distribution matches a Chî 2

chisq.test(result)



Working in R: Birthday problem example

I Formula: 1− 365!
(365−n)!365n

I In R, w can use the factorial() function

I So for n = 10:
1 - (factorial(365) / (factorial(365-n) * 365n))

I Does this work? No – numbers too big!

I How to solve this: use logarithms and lfactorial():
1-exp(lfactorial(365) - lfactorial(365-n) -

n*log(365))



Working in R: Birthday problem example code

lbdp <- function(n) {

1 - exp(lfactorial(365) - lfactorial(365-n) - n*log(365))

}

x <- 1:60

plot(x,lbdp(x))

plot(x,lbdp(x),

xlab="Number of people",ylab="Probability of same birthday")

abline(h=.5, lty="dashed", col="red")
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Example: Regression output
Valid cases: 4274 Dependent variable: disprls

Missing cases: 0 Deletion method: None

Total SS: 2094312.971 Degrees of freedom: 4251

R-squared: 0.887 Rbar-squared: 0.886

Residual SS: 237366.238 Std error of est: 7.472

F(22,4251): 1511.642 Probability of F: 0.000

Standard Prob Standardized Cor with

Variable Estimate Error t-value >|t| Estimate Dep Var

-------------------------------------------------------------------------------

CONSTANT 50.437041 0.164518 306.573980 0.000 --- ---

HSL*m -8.501692 2.525842 -3.365885 0.001 -0.082936 -0.215230

HSL -34.443131 2.579062 -13.354906 0.000 -0.329397 -0.216392

SL*m -6.526475 2.525842 -2.583881 0.010 -0.063667 -0.223110

SL -37.302552 2.579062 -14.463611 0.000 -0.356743 -0.225317

MSL*m -7.828347 2.525842 -3.099302 0.002 -0.076367 -0.217458

MSL -35.371193 2.579062 -13.714750 0.000 -0.338273 -0.218966

dH*m -8.292628 2.525842 -3.283115 0.001 -0.080896 -0.207012

dH -33.823319 2.579062 -13.114581 0.000 -0.323470 -0.208080

LRH*m -6.953863 2.525842 -2.753087 0.006 -0.067836 -0.224528

LRH -37.002049 2.579062 -14.347095 0.000 -0.353869 -0.226579

LRDr*m -7.023068 2.525842 -2.780486 0.005 -0.068511 -0.222815

LRDr -36.755473 2.579062 -14.251488 0.000 -0.351511 -0.224798

LRI*m -7.679571 2.525842 -3.040401 0.002 -0.074916 -0.217981

LRI -35.579349 2.579062 -13.795460 0.000 -0.340263 -0.219566

ImpHA*m -10.721835 2.525842 -4.244856 0.000 -0.104594 -0.157791

ImpHA -26.278325 2.579062 -10.189101 0.000 -0.251313 -0.156677

EqP*m -21.029154 2.525842 -8.325603 0.000 -0.205144 -0.147518

EqP -14.500895 2.579062 -5.622546 0.000 -0.138679 -0.141654

Dan*m -7.355209 2.525842 -2.911983 0.004 -0.071752 -0.220301

Dan -36.153527 2.579062 -14.018091 0.000 -0.345755 -0.222081

Ad*m -20.961184 2.525842 -8.298693 0.000 -0.204481 -0.145850

Ad -14.401702 2.579062 -5.584085 0.000 -0.137731 -0.139978
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